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1. Motivation

e Existing train-once-and-deploy person re-identification approaches are
not scalable, and sometimes even not plausible.

e In a real-world, given low Rank-1 recognition rates, human operators are
required to verify the unideal ranking lists.

e How to explore human-in-the-loop for person re-identification?

2. Contribution

e A Human Verification Incremental Learning (HVIL) model which enables
human-in-the-loop person re-identification.

e Compared to Post-rank Optimisation (POP) [1], HVIL enables incremental

4. Experiments

Human Feedback Protocol

o . Gallery contains 1000 identities.
o : Maximally 3 rounds of feedback for each probe.
o . Users only verify top 5% ranked gallery images.

Human-In-The-Loop Re-ld Performance

e Supervised models were trained by an average of 3,483 cross-view
images of 360 identities on CUHKO03, and 7,737 images of 501 identi-
ties on Market-1501.

e Human-in-the-loop models requires maximally 3 feedbacks per probe.

Table 1: Evaluating human-in-the-loop person re-id with CMC performances.
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Figure 1: (a) Conventional train-once-and-deploy re-id strategy requires pre-labelled 0 | 0 . | N
training data collection. (b) POP [1]: A recent human-in-the-loop re-id approach e backroond g g ko
which optimises probe-specific models in isolation. (c) HVIL: The proposed new

incremental human-in-the-loop re-id model.
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Figure 2: Comparing Rank-1 score and Expected Rank on human feedback rounds.
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Initial Rank Order

Real-time Model Update for Instant Feedback Reward

e Consider re-id ranking model f(-) as a negative Mahalanobis distance:

(3)

e A novel approach to human-in-the-loop person re-id by Human Verifi-
cation Incremental Learning (HVIL) is proposed.

fer(@9) = = [(2? —x9) M (2! — x9)], M € S¢.

e HVIL model avoids the need for collecting off-line pre-labelled training

e For real-time feedback and reward, f(-) is estimated on each human data. It is able to learn cumulatively from human feedback.

feedback in an online manner [2].
2 e A regularised metric ensemble learning (RMEL) model is further de-

veloped to explore HVIL for automated re-id tasks when human feed-
back is unavailable.

M, = argmin Ap (M, M,_1) + nL®,
MeS¢

(4)

Metric Ensemble Learning for Automated Re-id
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e HVIL learns a series of models {M;}’_, incrementally optimised /ocally
for a set of probes with human feedback. We further propose to learn an
ensemble learning model to re-id further probes without human feedback.
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