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A B S T R A C T

Source-free domain adaptation requires no access to the source domain training data during unsupervised
domain adaption. This is critical for meeting particular data sharing, privacy, and license constraints, whilst
raising novel algorithmic challenges. Existing source-free domain adaptation methods rely on either generating
pseudo samples/prototypes of source or target domain style, or simply leveraging pseudo-labels (self-training).
They suffer from low-quality generated samples/prototypes or noisy pseudo-label target samples. In this work,
we address both limitations by introducing a novel Class Prototype Discovery (CPD) method. In contrast to
all alternatives, our CPD is established on a set of semantic class prototypes each constructed for representing
a specific class. By designing a classification score based prototype learning mechanism, we reformulate the
source-free domain adaptation problem to class prototype optimization using all the target domain training
data, and without the need for data generation. Then, class prototypes are used to cluster target features
to assign them pseudo-labels, which highly complements the conventional self-training strategy. Besides, a
prototype regularization is introduced for exploiting well-established distribution alignment based on pseudo-
labeled target samples and class prototypes. Along with theoretical analysis, we conduct extensive experiments
on three standard benchmarks to validate the performance advantages of our CPD over the state-of-the-art
models.

1. Introduction

Whilst supervised deep learning has made remarkable progress in
computer vision [1], but this breakthrough requires a large amount of
labeled data. In many real-world scenarios such as autonomous driving
and medical imaging, it is difficult to obtain a large amount of labeled
data per domain for enabling supervised model optimization. Typically,
each domain has its own specific characteristics, such as illuminations,
colors, and backgrounds, giving rise to the challenging domain shift.
Specifically, a model trained on one domain (e.g., the source domain)
in a supervised learning manner often suffers poor generalization to a
new domain (e.g., the target domain). To avoid exhaustive per-domain
training data labeling, domain adaptation [2–4] is a viable solution,
which aims to transfer the knowledge learned from a labeled source
domain to an unlabeled target domain to help model perform better in
target domain.

Most existing domain adaptation methods focus on unsupervised
domain adaptation (UDA), which assume the simultaneous access to
both labeled source domain training data and unlabeled target domain
training data during model adaptation [2]. With the increasingly strict
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regularization imposed on data privacy and license, the research com-
munity has started to take action in innovation in order to fulfill the
legal responsibility and obligation. This has recently led to an emerging
research attention on source-free domain adaptation (SFDA) [5,6].
Building upon UDA, it further enforces a constraint of no access to the
source domain training data, with only the pre-trained model exposed to
domain adaptation.

There have been a number of SFDA works introduced in two lines.
The first line [6–8] takes the distribution alignment idea, largely fol-
lowing the most common paradigm of conventional UDA models. To
that end, they often require to generate pseudo training samples or class
prototypes in source or target style for distribution alignment. This gen-
eration task itself however is sufficiently challenging and remains open
and largely unsolved. Poor quality samples would significantly harm
the model adaption process and lead to inferior model generalization
on the target domain (Fig. 1(a)). The second line of methods [5] instead
adopt a self-training strategy without data generation. Nonetheless, this
approach has fundamental defects: (1) Failing to fully exploit the target
domain training data as only a fraction of high-confidence samples can
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Fig. 1. Illustration of (a) the traditional distribution alignment methods vs. (b) our class prototype discovery (CPD) method. Traditional distribution alignment methods generate
the class prototypes (or images) to perform domain adaptation, which suffers from the pitfalls of generating tasks. While our method constructs class prototypes by designing a
classification score based prototype learning mechanism.

be used in order to minimize false pseudo-labels; (2) Time-consuming
or space-consuming in order to obtain some additional supervision
information (e.g. pseudo-label). (3) Lacking a domain alignment scheme
that has been well established and verified effective in UDA.

To address the above two limitations of existing SFDA methods,
in this work we propose a novel Class Prototype Discovery (CPD)
method. Unlike the previous distribution alignment methods that need
to generate pseudo samples or class prototypes, we create a set of se-
mantic class prototypes (each for one class) by designing a classification
score based learning mechanism to leverage all the target domain sam-
ples. The SFDA problem is hence turned to a class prototype discovery
process. During training, we use the current batch of target samples to
incrementally update the class prototypes with the exponential moving
average (EMA) strategy. To fully capitalize the prototypes, we fur-
ther integrate self-training and distribution alignment. Concretely, with
class prototypes as the initial cluster centers, we perform clustering to
generate pseudo-labels.

We make the following contributions. (1) We propose a novel
Class Prototype Discovery (CPD) method for solving the SFDA problem,
without the need for generating source-domain like training data.
Making a full use of all the training data of target domain, it can
extract richer class discriminative information for more effective do-
main adaptation. This goes beyond the previous self-training alternative
methods that need more complexity to obtain extra supervision infor-
mation. (2) A prototype regularization is further introduced based on
the pseudo-label and distribution alignment strategies. (3) Despite its
simple design, extensive experiments on three standard image recogni-
tion benchmarks demonstrate that our CPD outperforms a wide variety
of state-of-the-art methods for both UDA and SFDA, often by a large
margin.

2. Related work

Unsupervised domain adaptation (UDA) aims to transfer knowledge
learned from a labeled source domain to an unlabeled target domain,
which assumes the simultaneous access to both labeled source do-
main training data and unlabeled target domain training data during
model adaptation. The existing UDA methods can be roughly divided
into seven categories. The first category is statistic moment matching,
with the main idea as defining and minimizing some loss function
on distribution discrepancy [9–11]. PAS [9] progressively anchor the
target samples which have relatively reliable pseudo labels for adap-
tation. DCAN [10] aligns the conditional distributions by minimizing
Conditional Maximum Mean Discrepancy, and extracts discriminant

information from the target domain by maximizing the mutual infor-
mation between samples and the prediction labels. CIDA [11] exploits
the mutual information to measure the independence/dependence be-
tween features and the corresponding class/domain labels to learn a
discriminative and domain-adaptive representation for both domains.
The second category uses the adversarial learning with a domain dis-
criminator for domain discrimination [2,12,13]. For domain alignment,
DANN [12] and CDAN [2] forces the feature network to produce
the representations such that the domain discriminator fails to tell
their domain . CRL [13] designs a novel class restriction loss by the
intra-class centralization and inter-class normalization to alleviate the
noisy pseudo label overfitting problem. The third category leverages
the adversarial generalization that combines the domain discriminator
with a generator [14]. CoGAN [14] generates fake data and aligns the
distribution between the two domains at the pixel level. The fourth
category applies the bi-classifier adversarial learning [15,16]. MCD [15]
plays a minimax game with a single feature extractor and two distinct
classifiers during adaptation. It maximizes the prediction discrepancy
when training the classifiers and minimizes the prediction discrepancy
when training the feature extractor. While CDAL [16] further solve the
ambiguous target samples by proposed ECI strategy. The fifth category
is Optimal transport [17]. DeepJDOT [17] consists of two steps: Finding
a coupling matrix for connecting each source sample and target sample,
followed by minimizing the cost of these pair-wise connections. The
sixth category resorts to self-supervised learning (SSL). It usually incor-
porates an auxiliary SSL task for further minimizing the cross-domain
discrepancy [18,19]. MNCP [18] proposes a prototype-guided domain-
invariant feature representation method to avoid transferring harmful
knowledge from the source domain to the target domain. DCJAN [19]
constructs a multitask pipeline by integrating jigsaw puzzle based self-
training and conditional constraint in the autoencoder framework. The
final category adopts the ensemble learning strategy. A typical overview
pf adopted is the Mean Teacher overview of with a student network
and a teacher network involved [20,21].

Source-free domain adaptation (SFDA) is a new, special case of
unsupervised domain adaptation. It eliminates the access to the source
domain training data. This is required in many application cases with
constraints in data privacy, decentralized computing and computa-
tional resources. We investigate the SFDA setting in this paper. The
existing SFDA methods can be divided into two groups. The first
group [6–8] adopts the distribution alignment idea following tradi-
tional UDA models. In particular, SFIT [7] leverages the batch-norm
layers of a pre-trained source domain model to stylize the training
data of target domain into the source domain. Given pseudo-source
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Fig. 2. Overview of the proposed Class Prototype Discovery (CPD) method. In SFDA, the model takes as input only the unlabeled training data of target domain. The core of CPD is
to discover (a) a set of class prototypes {c

k
}K
k=1 that can drive the model adaptation to fit the characteristics of target domain (green arrow). Each class prototype c

k
is designated

for a specific class k À {1,… ,K}, residing in the feature space. They are updated progressively during each mini-batch training (Eq. (2)), conditioned on (b) the weight constraints
derived from the classification scores (red arrow). We further introduce (c) a prototype regularization for conditional distribution alignment across domains, based on the class
prototypes {c

k
}K
k=1 (blue arrow). (d) Finally, we also integrate the self-training strategy by pseudo-label estimation at the mini-batch level (orange arrow).

domain data, existing UDA methods can be then applied. In contrast,
3C-GAN [6] instead designs a generator to produce target-domain-style
training samples subject to the classifier of the model pre-trained on
the source domain, followed by applying a clustering-based regulariza-
tion and weight regularization to better generalize the source-domain
model. On the other hand, SDDA [8] applies conditional GAN frame-
work to generate labeled samples, and aligns the distribution between
two domains at the feature level and the pixel level. SFDA-DE [22] uses
class prototypes learned by pre-trained classifier as the initialization of
feature center for each class and clusters target features with spherical
k-means. A common challenge of these methods is in generating high-
quality training data or class prototypes which remain difficult and
unsatisfactory.

The second group of methods adopts a self-training learning strat-
egy. The main idea is to apply additional supervision information for
model updating. For example, SHOT [5] adopts the information maxi-
mization principle to make the prediction outputs scatted in the target
domain. D-MCD [23] devises a strong–weak self-training paradigm to
reduce the label noise in the high-confidence pseudo samples. PSFDA
faster R-CNN [24] devises a scheme of iteratively updating global class
prototype and a more accurate pseudo-label generation method com-
bining semantic information and image information. Whilst achieving
good performance, these methods are fundamentally limited in lever-
aging the useful information of low-confidence samples or assuming
class balanced training data [5]. To overcome this problem, we propose
the idea of class prototype discovery in this work wherein all the
training samples of target domain can be exploited to support the model
adaptation in a confidence-aware manner.

3. Method

3.1. Problem statement

In source-free domain adaptation (SFDA), we have access to a
model ⇥s pre-trained on a labeled dataset Ds = {(xs

i
, y

s

i
)}ns

i=1 from a
source domain, where x

s

i
denotes the ith image with the class label

yi À {1, 2,… ,K} and of K a total classes. Given a target domain T

represented by an unlabeled dataset Dt = {(xi)}ni=1, we aim to adapt the
source model ⇥s to be better performing without access to the source
training data Ds. Often, there exists distribution shift across domains
that challenges the model ⇥s.

Overview: Given an image x, the model aims to classify it into one
of the K classes accurately. As shown in Fig. 2, we adopt the common
CNN architecture [1]: (1) first extracting a feature vector f = g(x) À Rd

of an image x with the feature dimension d, and (2) passing through a
classifier h(�) to obtain the classification score p = h(f ) À RK .

The core contribution of this work is a new Class Prototype Dis-
covery (CPD) strategy. A class prototype is a vector representation of a
specific class in the feature space f . CPD aims to discover an optimal
prototype ck for each class k with unlabeled target domain data Dt

in the sense that they can well capture the semantic characteristics
of target domain, therefore realizing domain adaptation. Crucially, our
CPD enables to simplify the model architecture because each individual
class prototype can be easily evaluated by the classifier. Specifically, to
evaluate each class prototype ck during domain adaptation, we merely
need to apply the classifier and match the classification score pk =
h(ck) against the designated class label k. This can be realized by the
cross-entropy based classification optimization.

3.2. Class prototype discovery

Our CPD is designed to be compatible with mini-batch based deep
learning. Given a mini-batch target domain training data {xi}Bi=1 at each
training iteration, we obtain the feature vectors {f i}Bi=1 and classifica-
tion scores {pi}Bi=1. The key challenge is to update the class prototypes
{ck}Kk=1 with these unlabeled training data.

At the absence of class label, we propose to accumulate the vi-
sual knowledge from the unlabeled data to the class prototypes in
a confidence-aware manner. Specifically, we start by introducing a
per-sample confidence weight w.r.t. each class k as:

wi,k = e
pi,k

≥B

b=1 e
pb,k

, (1)

where pi,k specifies the probability score that xi belongs to the kth class.
That is, pi = [pi,1,… , pi,K ], and

≥K

k=1 pi,k = 1. Intuitively, this weight
means a normalized score that a sample can represent the semantics of
a class, as it is normalized across the mini-batch of samples (Fig. 2(b)).

Subsequently, we update each class prototype ck through an effi-
cient weighted summation operation in the feature space as:

ck = ⌘ck + (1 * ⌘)c®
k
, with c®

k
=

B…
i=1

wi,k < f i
(2)

where ⌘ specifies the momentum degree for prototype update. This
way, each prototype allows to improve continuously by absorbing the
relevant knowledge from each individual training sample in a reli-
able and progressive manner during model training. This is drastically
different from conventional approaches that are limited to only high-
confidence samples. In contrast, our method focuses on deriving a
class-level representation by extracting and summarizing knowledge
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from each individual sample. Importantly, our CPD makes full use of
all the training samples, whilst minimizing the notorious error propa-
gation limitation with pseudo-labels. As a result, more comprehensive
and richer knowledge about the target domain can be extracted and
exploited for superior domain adaptation.

Prototype initialization: A common way to class prototype initializa-
tion is using random vectors. However, this may introduce training
instability due to the cold start problem. In this work, we find that
sweeping the training data Dt using the source trained model ⇥s with
the proposed prototype update operation (Eq. (2)) is both more stable
and better performing (see Table 5).

3.3. Training objective loss function

As each class prototype ck is designated with a specific class label
k, its ground-truth label is assigned and hence known. To form a
supervision signal, we first pass it through the classifier to obtain a
classification score, and then apply the standard cross-entropy loss
function:

Lcp =
1
K

K…
k=1

L
ce(h(ck), k). (3)

where L
ce(�, �) means cross-entropy loss function. Minimizing this loss

function is separating the K class prototypes. Considering the learning
process in Eq. (2), actually each prototype is a concise proxy (or
delegate) of a group of semantically similar training samples. Thus, this
supervision is essentially seeking for the underlying decision boundary
between different classes for the target domain, which originally is am-
biguous and incorrect due to the presence of cross-domain distribution
shift.

Clustering target samples by class prototypes: It is found that using
extra information (e.g. feature memory [25] and additional cluster
centers [5]) is beneficial for pseudo-label estimation. In a similar spirit,
we exploit class prototypes along with clustering at the beginning of
each epoch. Specifically, (1) the initial cluster centers {cck}Kk=1 are
initialized by class prototypes {ck}Kk=1: cck = ck, k À {1, 2,… ,K}. (2)
Then, each target sample xi is labeled by the nearest cluster center
{cck}Kk=1: Çyi = argmink cos(f i, cck), where cos(�, �) is the cosine distance
function. (3) The cluster centers are further updated by these pseudo-
labeled target samples: cck = 1

nk

≥n

i=1 1 Çyi=kf i, k À {1, 2,… ,K}, where
nk = ≥n

i=1 1 Çyi=k. We repeat the steps (2) and (3) until converging. All
target samples finally obtain the pseudo-labels { Çyi}ni=1.

Prototype regularization: Inspired by the previous UDA methods, we
further introduce a prototype regularization for cross-domain distribu-
tion alignment for facilitating the domain adaptation process. To that
end, existing SFDA methods [6–8,22] need to generate pseudo source
samples or class prototypes. This scheme is expensive, complex, as well
as error-prone due to low-quality generation. Our class prototypes can
address these limitations elegantly.

By the supervision of ground-truth labels (Eq. (3)), our class proto-
types are largely reliable. Even with the distribution shift, we consider
that they are useful in classifying those target samples with certain sim-
ilarities. With these ct

k
and pseudo-labeled target samples, we formulate

a prototype regularization for conditional distribution alignment as:

Lreg = 1
K

K…
k=1

ÙÙÙÙÙÙ
1
Nk

B…
i=1

1 Çyi=k�(f i) * �(ck)
ÙÙÙÙÙÙ

2

(4)

where Nk = ≥B

i=1 1 Çyi=k is the number of target samples with pseudo-
label k in the current batch, and �(�) refers to a non-linear map and
�(�)T �(�) is a Gaussian kernel. This type of regularization has been used
in conventional UDA methods [10], and we further eliminate the need
for source domain training data and introduce it into SFDA.

Algorithm 1 Class Prototype Discovery for SFDA
Input: A pre-trained source model ⇥s, unlabeled training data from
target domain Dt = {(xi)}

nt

i=1, the epoch number T , the mini-batch
number M .
Output: An adapted model.
Procedure:
1: Initialize the class prototypes {ck}Kk=1 with ⇥s;
2: for t = 1:T do
3: for m = 1:M do
4: Forward a mini-batch through the model;
5: Compute the weights wi,k (Eq. (1));
6: Update {ck}Kk=1 (Eq. (2));
7: Calculate Lcp, Lreg , Lpl;
8: Update the feature extractor with SGD (Eq. (6));
9: end for
10: end for
11: return Adapted model.

Overall loss function: Specifically, we train the model by computing
the cross-entropy between the prediction and the pseudo-label of the
sample as follows:

Lpl =
1
B

B…
i=1

L
ce(h(g(xi)), Çyi). (5)

The final objective loss of our CPD is formulated as:

L = Lcp + ↵Lreg + �Lpl , (6)

where ↵ and � are two balancing hyper-parameters. As the training
progresses, the accuracy of pseudo-labels would grow, thus increasingly
beneficial. Overall, our method has two parts: class prototype discovery
and exploitation. We summarize our training process in Algorithm 1.

3.4. Theoretical analysis

We make a theoretical analysis in generic domain adaptation per-
spective [26]. For a solution hypothesis h À H, the expected error for
target domain T is generally bounded as:

R
T
(h) f R

S
(h) + 1

2dH�H (S , T ) + � , (7)

where R
S
(h) is the expected error for domain S. In our case, S is ap-

proximated by our constructed class prototypes. d
H�H (S , T ) represents

the domain discrepancy between S and T , which can be minimized
by our prototype regularization. � is the shared error across domains
defined as � = minhÀH E

S
(h, l

S
)+E

T
(h, l

T
) where l

S
and l

T
are domain-

specific real labeling functions, and E
X
(�) measures the disagreement of

two labeling functions w.r.t. a specific domain X . Under the triangle
inequality [26], we have:

� = min
hÀH

E
S
(h, l

S
) + E

T
(h, l

T
)

f min
hÀH

E
S
(h, l

S
) + E

T
(h, l

S
) + E

T
(l
S
, l
T
)

f min
hÀH

E
S
(h, l

S
) + E

T
(h, l

S
) + E

T
(l
T
, Çl
T
) + E

T
(l
S
, Çl
T
),

where Çl
T
is a pseudo-labeling function for domain T , e.g., h(g(�)). First,

E
S
(h, l

S
) and E

T
(h, l

S
) quantify the disagreement between h and l

S
on

S and T . By supervised training on class prototypes (Eq. (3)), h can be
constrained to be close to l

S
and hence restrict both disagreement to

be small.
Second, E

T
(l
T
, Çl
T
), the disagreement between l

T
and Çl

T
on T , is

minimized by both the pseudo-label strategy and our c®
k
(Eq. (2)) for

inclining to those samples with high weights and high likelihood of
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Table 1
Comparison with the state-of-the-art methods on Office-31 dataset. Metric: classification accuracy (%); Backbone: ResNet-50;
SF: Source-Free.
Method SF Venue AôD AôW DôA DôW WôA WôD avg

ResNet-50 [1] ù CVPR16 68.9 68.4 62.5 96.7 60.7 99.3 76.1

DANN [12] ù JMLR16 79.7 82.0 68.2 96.9 67.4 99.1 82.2
DADA [27] ù AAAI20 93.9 92.3 74.4 99.2 74.2 100.0 89.0
ALDA [28] ù AAAI20 94.0 95.6 72.2 97.7 72.5 100.0 88.7
MDD+IA [29] ù ICML20 92.1 90.3 75.3 98.7 74.9 99.8 88.8
ATDOC [25] ù CVPR21 94.4 94.5 75.6 98.9 75.2 99.6 89.7
DWL [30] ù CVPR21 91.2 89.2 73.1 99.2 69.8 100.0 87.1
CaCo [31] ù CVPR22 81.7 89.7 73.1 98.4 72.8 100.0 87.6
BDCA [32] ù AAAI22 93.8 94.0 73.5 99.0 73.0 100.0 88.9
ABAS [33] ù WACV22 95.0 96.1 75.9 98.5 70.7 100.0 89.4

SHOT [5]
˘

ICML20 94.0 90.1 74.7 98.4 74.3 99.9 88.6
3C-GAN [6]

˘
CVPR20 92.7 93.7 75.3 98.5 77.8 99.8 89.6

SDDA [8]
˘

WACV21 85.3 82.5 66.4 99.0 67.7 99.8 83.5
SFIT [7]

˘
CVPR21 89.9 91.8 73.9 98.7 72.0 99.9 87.7

A2Net [34]
˘

ICCV21 94.5 94.0 76.7 99.2 76.1 100.0 90.1
SFDA-DE [22]

˘
CVPR22 96.0 94.2 76.6 98.5 75.5 99.8 90.1

DIPE [35]
˘

CVPR22 96.6 93.1 75.5 98.4 77.2 99.6 90.1
D-MCD [23]

˘
AAAI22 94.1 93.5 76.4 98.8 76.4 100.0 89.9

CPD
˘

Ours 96.6 ± 0.1 94.2 ± 0.4 77.3 ± 0.2 98.2 ± 0.1 78.3 ± 0.3 100.0 ± 0.0 90.8

being correctly predicted. Specifically, for the kth prototype of the
target domain, it is calculated as,

ck =
nt…
i=1

wikf t

i
˘

…

f t

i
Àsett

k

wikf t

i
, (8)

where set
t

k
is a set of target samples with high weights wik, that

is, Çl
T
(f t

i
) = k when f t

i
À set

t

k
. It means the kth prototype ck is

an approximation of the features from the kth category. When these
prototypes are optimized using classification loss (Eq. (3)), h(ck) will
get more closer to the real label k, essentially making the feature in
set

t

k
close to the real label k. Therefore E

T
(l
T
, Çl
T
) is minimized.

Third, E
T
(l
S
, Çl
T
) is constrained by our prototype regularization,

which essentially pull pseudo-labeled samples to the corresponding
class prototype ck. Specifically, when we perform semantic alignment
of the kth category, the prototype regularization optimizes the follow-
ing equation,

ÙÙÙÙÙÙÙ

1
Nk

…

f t

i
Àsett

k

�(f t

i
) * �(ck)

ÙÙÙÙÙÙÙ

2

, (9)

By optimizing Eq. (9), the feature f t

i
À set

t

k
will be close to the

kth prototype ck, which makes l
S
(f t

i
) = l

S
(ck) = k. So E

T
(l
S
, Çl
T
) is

minimized.
In summary, the overall upper bounds will be decreased. This

theoretically proves that our method works.

4. Experiments

In this section, we first describe our experimental setup, which
includes an introduction to the dataset, implementation details, and
other competitors. Then we present the comparison results with other
state-of-the-art methods. Finally, we further set up some ablation ex-
periments to further verify the effectiveness of our method.

4.1. Experimental setup

Datasets: Like most domain adaptation methods, there are three stan-
dard datasets we choose, namely Office-31, Office-Home, Visda-17 .

Office-31 [36]2 is a standard benchmark which contains 4,652
images from 31 office environment categories. It is collected from

2 http://www.eecs.berkeley.edu/Ìmfritz/domainadaptation/

three different domains: Amazon (A) downloaded from online website,
Webcam (W) and DSLR (D) taken by web camera and digital SLR
camera respectively.

Office-Home [37]3 is a more challenging dataset with 15,588 im-
ages from 65 classes in four domains: Artistic images (Ar), Clip-Art
images (Cl), Product images (Pr) and RealWorld images (Rw).

Visda-17 [38]4 is another challenging domain adaptation bench-
mark for synthesis-to-real object recognition task. It has 12 classes,
including a source domain with 152,397 synthetic images and a target
domain with 55,388 real object images.

Implementation details: Our experiments are implemented on Py-
torch platform. For each experiment, the same setting is run for five
times to enhance robustness and report the mean and standard devia-
tion. For fair comparison with existing methods, we use the same CNN
backbone (Resnet50 for Office-31 and office-home and Resnet101 for
Visda-17). The bottleneck network and classifier both consist of one
fully-connected layers in all cases. We use the SGD optimizer with the
cosine learning rate scheduler. We set empirically the hyper-parameters
as follows: ⌘ = 0.8 for Eq. (2), ↵ = 0.3 for all datasets, � = 0.1_0.1_0.3
for Office-31/Office-Home/Visda-17 in Eq. (6).

Competitors: We compare three groups of alternative methods from
the literature. (1) Direct Transfer (DT) of a supervised learning model
(e.g., ResNet [1]) trained on the source domain without any adapta-
tion towards the target domain. This is useful to reveal the domain
shift problem. (2) Previous state-of-the-art Unsupervised Domain Adap-
tation (UDA) methods that require both domain’s training data for
domain adaptation. These include DANN [12], DADA [27], ALDA [28],
MDD+IA [29], ATDOC [25] and DWL [30], CaCo [31], BDCA [32],
ABAS [33]. (3) Recent state-of-the-art Source-Free Domain Adaptation
(SFDA) methods that need no access to the source domain data for do-
main adaptation. They are SHOT [5], 3C-GAN [6], SDDA [8], SFIT [7],
DIPE [35], D-MCD [23], SFDA-DE [22], A2Net [34] and G-SFDA [39].

4.2. Result analysis

Results on Office-31: The results of our CPD and other state-of-the-art
methods are reported in Table 1. Out of all six tasks, our CPD produces
the best results in 4 of them. In the remaining two tasks, our CPD does
not lag far behind the best competitor. Especially in task WôA, CPD

3 https://www.hemanthdv.org/officeHomeDataset.html
4 http://ai.bu.edu/visda-2017/
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Table 2
Comparisons with the state-of-the-art methods on Office-Home dataset. Metric: classification accuracy (%); Backbone: ResNet-50;
SF: Source-Free.
Method SF ArôCl ArôPr ArôRw ClôAr ClôPr ClôRw PrôAr PrôCl PrôRw RwôAr RwôCl RwôPr avg

ResNet-50[1] ù 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [12] ù 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN+E [2] ù 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
ABAS [33] ù 51.5 71.7 75.5 59.8 69.4 69.5 59.8 47.1 77.7 70.6 55.2 80.2 65.7
MDD+IA [29] ù 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
ATDOC [25] ù 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
BDCA [32] ù 51.8 73.9 80.7 66.3 71.8 74.2 65.3 51.8 81.1 74.7 58.5 84.6 69.6

SHOT [5]
˘

57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
G-SFDA [39]

˘
57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

DIPE [35]
˘

56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5
D-MCD [23]

˘
59.4 78.9 80.2 67.2 79.3 78.6 65.3 55.6 82.2 73.3 62.8 83.9 72.2

CPD
˘

59.1 79.0 82.4 68.5 79.7 79.5 67.9 57.9 82.8 73.8 61.2 84.6 73.0
±0.2 ±0.2 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1

Table 3
Comparison with the state-of-the-art methods on Visda-17 dataset. Metric: per-class classification accuracy (%); Backbone:
ResNet-101; SF: Source-Free.
Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg

ResNet-101 [1] ù 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [12] ù 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [2] ù 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
DADA [27] ù 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
ALDA [28] ù 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
DWL [30] ù 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
ATDOC [25] ù 93.7 83.0 76.9 58.7 89.7 95.1 84.4 71.4 89.4 80.0 86.7 55.1 80.3
CaCo [31] ù 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9

SHOT [5]
˘

94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
3C-GAN [6]

˘
94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

SFIT [7]
˘

94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4
A2Net [34]

˘
94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3

DIPE [35]
˘

95.2 87.6 78.8 55.9 93.9 95.0 84.1 81.7 92.1 88.9 85.4 58.0 83.1
CPD

˘
96.7 88.5 79.6 69.0 95.9 96.3 87.3 83.3 94.4 92.9 87.0 58.7 85.8

leads the best competitors by 1.9%. Compared with ATDOC, which is
a best competitor in the UDA setting, CPD still exceeds it by 1.1% in
a more challenging SFDA setting. Compared with A2Net, SFDA-DA and
DIPE, which are three best competitors in the SFDA setting, CPD still
surpasses these methods 0.7%, which proves the effectiveness of our
method.

Results on Office-Home: As shown in Table 2, on this more chal-
lenging test benchmark we have largely similar observations as above.
For example, our CPD remains the best performer, whilst other SFDA
methods expect some recent methods fail to catch up the best UDA
model ATDOC. Importantly, the margin of the best over the remaining
is further enlarged. This indicates the stability and generalization of our
method.

Results on Visda-17: This presents a different test scenario on the
transfer between synthetic and real image data. As shown in Table 3,
this is not an exceptional case in comparisons between best UDA and
SFDA methods. Again, our CPD method remains the best adaption
method among all the alternatives, although on a number of tasks
different methods may excel. Encouragingly, we see that CPD can
outperform the best UDA method, BCDM, by a margin of 2.2%. This
consistently shows the stable performance advantage of our method
over all the existing competitors, verifying the efficacy of our class
prototype discovery idea.

From Tables 1–3, we can make the following observations. (1)
The domain shift in data distribution indeed challenges the source
domain’s model (Reset50 in this case), leading to significant inferior
model generalization. (2) Compared with the UDA setting, SFDA is
more challenging. So it is not surprising to see that most SFDA methods
are outperformed by best UDA models. However, we also see some
exceptions including the very recent methods, and our CPD. This is a
phenomenal achievement as the conventional wisdom would consider

the best UDA performance as an upper bound for SFDA. This suggests
that source data is not necessary at all provided that the pre-trained
model and target domain data both can be well exploited. (3) Among
the top-3 methods, our CPD is the best on the most transfer tasks
as well as in the overall performance. This clearly demonstrates the
superiority of our method over the state-of-the-art alternatives despite
its simplicity.

4.3. Ablation study

In this section, we further construct some experiments to analyze
our method and prove its effectiveness. First, we conducted a compo-
nent analysis to analyze the effectiveness of each part of our method.
Then, the learned features of different combinations are visualized by
t-SNE to give an intuitive understanding. Next, the hyperparameters
↵, �, and ⌘ are analyzed to demonstrate the robustness of our CPD.
Next, we analyzed how to initialize prototype. Finally, we compare
class prototype with current pseudo label strategy to further verify the
effectiveness of discovered class prototype.

Component analysis: We conduct component analysis including class
prototype (CP), prototype regularization (PR), and pseudo-labels (PL)
based on Office-31 datasets. Since the accuracies on the WôD and
DôW transfer tasks are relatively high, so we perform other four task
experiments to show the performances of our method with different
parts.

Table 4 shows that (1) the class prototypes alone can provide strong
results across all the tasks, laying down a solid performance ground. (2)
When then class prototypes are further used for domain adaptation,
a clear accuracy gain is achieved. This suggests the importance of
conditional distribution alignment thanks to a reliable usage of our
class prototypes. (3) A further boost is realized from integrating the
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Fig. 3. Component analysis by T-SNE based feature visualization on the task DôA of Office * 31. CP: Class Prototype; PR: Prototype Regularization; PL: Pseudo-label.

Fig. 4. Sensitivity analysis of (l) moving average momentum ⌘ and (r) loss weights ↵ and � on Office * 31.

Table 4
Component analysis on Office-31. CP: Class Prototype; PR: Prototype Regularization;
PL: Pseudo-label.
Component AôD AôW DôA WôA

Direct transfer 68.9 ± 0.1 68.4 ± 0.1 62.5 ± 0.1 60.7 ± 0.1
CP 91.2 ± 0.1 90.1 ± 0.2 73.4 ± 0.1 73.9 ± 0.1
CP+PR 94.9 ± 0.2 93.4 ± 0.3 76.4 ± 0.1 77.4 ± 0.1
CP+PR+PL 96.6 ± 0.1 94.2 ± 0.4 77.3 ± 0.2 78.3 ± 0.3

pseudo-labels, suggesting a good compatibility of our method with the
self-training pipeline.

Visualization by t-SNE: To give an intuitive understanding of our
method, the target features on the transfer task DôA are further
visualized by t-SNE [40] in Fig. 3. The features in Fig. 3(a) are learned
by the class prototype discovery. The features shown in Fig. 3(b) are
extracted by network g optimized by both class prototype discovery and
the prototype regularization. Fig. 3(c) shows the features by minimiz-
ing CPD strategy, prototype regularization and pseudo-label strategy
simultaneously. It can be observed that the features in Fig. 3(a) are
very scattered. Compared with Fig. 3(a), the features in Fig. 3(b) are
more concentrated due to the influence of prototype regularization.
The features are more concentrated in Fig. 3(c) since pseudo-label
strategy is further added. From left to right, the features are obtained by
optimizing the class prototype discovery, both prototype regularization
and class prototype discovery, and all terms. And the experimental
results are consistent with the component analysis.

Parameter analysis: To verify the robustness of our method, we fur-
ther analyze the sensitivity of parameters ⌘, ↵ and � in Eqs. (2) and (6),
respectively. Their experimental results on all transfer tasks of Office-31
are shown in Fig. 4.

For the parameter ⌘, the result is shown in Fig. 4(a). On the whole,
the experimental performance is increased first and then decreased with
the increase of ⌘. To achieve the better performance, ⌘ is set as 0.8 for
trading off in all experiments.

For the parameters ↵ and �, the results are shown in Fig. 4(b).
Similar to ⌘, the experimental performance is increased first and then
decreased with the increase of ↵ and �. In our method, ↵ = 0.3 for all
datasets, � = 0.1_0.1_0.3 for Office-31/Office-Home/Visda-17.

Table 5
Effect of class prototype initialization on Office-31.
Init. AôD AôW DôA WôA

Random 93.9 ± 0.4 92.8 ± 0.2 76.3 ± 0.4 77.1 ± 0.3

Ours 96.6 ± 0.1 94.2 ± 0.4 77.3 ± 0.2 78.3 ± 0.3

Table 6
The comparison between our class prototype (CP) discovery and conventional
pseudo-label (PL) strategy on Office-31.
Component AôD AôW DôA WôA

PL 84.2 ± 0.2 83.2 ± 0.3 68.9 ± 0.2 66.9 ± 0.2
CP 91.2 ± 0.1 90.1 ± 0.2 73.4 ± 0.1 73.9 ± 0.1

From results, we can find that the performance have little effect on
the changes of all hyperparameters, which shows the robustness of our
method.

Prototype initialization: To examine the effect of class prototype
initialization, we further compare our sweeping method (Section 3.2)
with the random vector baseline.

Table 5 shows that using the source model for prototype initializa-
tion is consistently superior. In contrast, the baseline will suffer a cold
start which harms the performance.

Class prototype vs. pseudo-label: We further compare the perfor-
mance of our class prototype (CP) idea with the conventional pseudo-
label (PL) strategy. Both CP and PL leverage classifier’s predictions but
differ in some key manners. PL uses classifier’s predictions to obtain
pseudo-labels for self-training. In contrast, CP aggregates the classifier’s
predictions with predictive confidences over all the training samples to
construct a class prototype for each class on which we impose the
learning constraints. This sets our method apart from PL which however
imposes learning supervision on training samples individually without
tolerance to predictive uncertainty and mistakes. We report the results
on top-4 challenging tasks of Office-31 are shown in Table 6. It is
evident that our CP is clearly superior over PL in making use of class
predictions for SFDA.

Noise analysis of pseudo-labels:We assess the noise degree of pseudo-
labels by our method (i.e. class prototypes based K-means clustering per
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Fig. 5. Pseudo-label noise analysis on AôD and DôA.

epoch) and a baseline that uses the network predictions. Fig. 5 shows
that our method is more reliable, especially in the beginning of training.

4.4. Limitation and future work

In our experiments, it is assumed that the source and target domains
share the same set of classes (i.e., the closed-set setting). In many real-
world situations, however, this might be not true but unknown/novel
classes may appear in the target domain. Therefore, how to extend our
current model by integrating the ability of discovering novel classes
would be useful, which is part of our future work.
5. Conclusions

We have proposed a novel class prototype discovery (CPD) method for
source-free domain adaption. It is built on the introduction of semantic
class prototypes. To discover the optimal prototypes more reliably, we
design a classification score-based learning mechanism to enable a full
usage of all the target domain training data. Further, we introduce a
prototype regularization for conditional distribution alignment via class
prototypes. CPD is not only concise and effective, but also complemen-
tary to conventional self-training with theoretical justification. Finally,
we conduct experiments on three public datasets to verify our CPD in
comparison to a wide range of alternative methods, along with in-depth
ablation study and visualization. Although achieving new state-of-the-
art performance, our evaluation assumes the closed-set setting where all
the classes are aligned across the source and target domains. In practice,
there could be new classes involved in the training data. Extending
our method to the more realistic open-set setting would be another
significant research in the future.
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