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ABSTRACT
As a state-of-the-art family of Unsupervised Domain Adaptation
(UDA), bi-classifier adversarial learning methods are formulated in
an adversarial (minimax) learning framework with a single feature
extractor and two classifiers. Model training alternates between
two steps: (I) constraining the learning of the two classifiers to
maximize the prediction discrepancy of unlabeled target domain
data, and (II) constraining the learning of the feature extractor to
minimize this discrepancy. Despite being an elegant formulation,
this approach has a fundamental limitation: Maximizing and mini-
mizing the classifier discrepancy is not class discriminative for the
target domain, finally leading to a suboptimal adapted model. To
solve this problem, we propose a novel Class Discriminative Ad-
versarial Learning (CDAL) method characterized by discovering
class discrimination knowledge and leveraging this knowledge to
discriminatively regulate the classifier discrepancy constraints on-
the-fly. This is realized by introducing an evaluation criterion for
judging each classifier’s capability and each target domain sample’s
feature reorientation via objective loss reformulation. Extensive
experiments on three standard benchmarks show that our CDAL
method yields new state-of-the-art performance. Our code is made
available at https://github.com/buerzlh/CDAL.
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1 INTRODUCTION
Supervised deep learning excel in various computer vision tasks
[9, 15, 32, 46] with reliance on big data annotation. Nonetheless,
labeling such training data for every single domain is prohibitively
expensive or impossible for many scenarios. Unsupervised domain
adaptation (UDA) [30] is a viable solution by transferring the knowl-
edge from a labeled source domain to an unlabeled target domain.

Among existing UDA methods, a representative family of top-
performing methods, bi-classifier adversarial learning, are formu-
lated in an adversarial learning framework [4, 16, 18, 33], wherein
the feature extractor and two classifiers form a minimax game al-
ternating between two steps: (1) Optimizing the classifiers subject
to maximizing the discrepancy of their predictions, with an aim to
identify the target samples out of the support of source distribu-
tion; (2) Optimizing the feature extractor subject to minimizing this
classifier discrepancy, with an aim to align the distributions across
domains. While being an elegant formulation, it suffers from a fun-
damental limitation. Concretely, as shown in Fig.1(a), target samples
out of the support of source distribution can be summarized in two
types: Easy samples with the consistent predicted labels by two
classifiers; Ambiguous (hard) samples with inconsistent predicted
labels by two classifiers, and misclassified by at least one classi-
fier. We observe that traditional bi-classifier adversarial learning
methods tend to yield more ambiguous samples from maximizing
the prediction discrepancy because it forces the predictions of two
classifiers to be inconsistent. After minimizing this discrepancy,
easy samples can be often matched to the correct category labels,
while ambiguous samples could be dominated by misclassified clas-
sifier and matched to the wrong class [4]. Together with that the
learning constraints of both steps are not class discriminative, the
performance of such domain adapted classifiers would be limited.

For minimizing the performance drop of the adapted classifiers
with bi-classifier adversarial learning, properly handling the am-
biguous target samples is a key. To that end, we propose a novel
Class Discriminative Adversarial Learning (CDAL) method. It
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Figure 1: Illustration of (a) the traditional bi-classifier adversarial learning method vs. (b) our class discriminative adversarial
learning (CDAL) method. Traditional bi-classifier adversarial method maximizes the prediction discrepancy when optimizing
two classifiers, which yields more ambiguous target samples. Besides, ambiguous target samples may be matched to wrong
classes when minimizing the prediction discrepancy in optimizing the feature extractor. To address this problem, we propose a
novel CDAL framework characterized with an Expertise-aware Classifier Interference (ECI) strategy for more discriminative
classifier optimization. It can reason away ambiguous target samples gradually, leading to superior domain alignment.

is based on an Expertise-aware Classifier Interference (ECI) strategy
that enables the classifiers to be mutually beneficial and become in-
creasingly discriminative during training. Concretely, with ECI we
evaluate the per-sample discrimination ability of the two classifiers.
Subsequently, for the classifier making a better prediction, we max-
imize the prediction discrepancy against the other to find the target
samples out of the support of source distribution; Meanwhile, the
other classifier is optimized instead by minimizing the prediction
discrepancy so that it can be corrected and aligned with the better-
performing classifier for more consistent and accurate predicting.
As a consequence, the two classifiers improve their discrimina-
tive power progressively, resulting in less ambiguous samples. To
further suppress ambiguous target samples, we design a comple-
mentary representation regularization for enhancing the learning
of feature extractor with conditional distribution alignment.

Our contributions can be summarized as follows: (1) We propose
a novel Class Discriminative Adversarial Learning (CDAL) frame-
work for UDA. This solves the fundamental limitations of existing
alternatives in relating the predictions of two classifiers without
considering their discriminating capability. (2) Compared with tra-
ditional bi-classifier adversarial learning methods, CDAL can more
effectively improve the discrimination ability of both adapted classi-
fiers whilst reasoning away ambiguous target samples during train-
ing. (3) Extensive experiments show that CDAL outperforms state-
of-the-art methods by a clear margin on three standard datasets.

2 RELATEDWORK
Unsupervised Domain Adaptation (UDA) aims to transfer knowl-
edge learned from a labeled source domain to an unlabeled tar-
get domain. The existing research routes of unsupervised domain

adaptation methods can be roughly divided into six routes. The
first route is statistic moment matching, which mitigates the gap
between two domains by minimizing some defined statistical dis-
crepancy metrics, such as DAN [23], CORAL [36, 48], CMD [44],
CAN [12] and ETD [17] and so on. The second route applies adver-
sarial learning framework, which introduces a domain discriminator
for domain classification, then forces feature extractor confusing
domain discriminator to learn domain invariant features. The rep-
resented methods are DANN [6], CDAN [24], and ADDA [39] and
so on. The third route is based on adversarial generation framework,
which combines the domain discriminator with a generator, and
generates fake data and aligns the distribution between the two
domains based on pixel-level. The methods with high attention
are CoGAN [21], SimGAN [35] and CycleGAN [47]. The fourth
route uses self-training strategy, which implicitly minimizes the
discrepancy between two domains by incorporating auxiliary self-
supervised learning tasks into the original task, such as MTAE [7],
DRCN [8], and ssUDA [37]. The fifth route applies ensemble learn-
ing by learning multiple models together. The typical approaches
are based on the Mean Teacher framework [1, 3, 5, 38], consisting
of a student network and a teacher network.

The final strategy is called bi-classifier adversarial learning, which
plays a minimax game with a single feature extractor and two dis-
tinct classifiers during domain adaptation. This type of methods
maximize the prediction discrepancy of unlabeled target domain
samples when optimizing the two classifiers and minimize this
discrepancy when optimizing the feature extractor, so as to align
the distribution between two domains [4, 16, 18, 33]. Specifically,
MCD [33] uses L1 norm to calculate the prediction discrepancy,
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Figure 2: An illustration of our Class Discriminative Adversarial Learning (CDAL) method. In the first step, the model (including
the feature extractor and two classifiers) is trained by labeled source samples. (a) In the second step, the feature extractor is
fixed while the two classifiers are updated by the proposed Expertise-aware Classifier Interference (ECI) strategy. Note, the
supervised training supervisory on source domain is applied to preserve the classification ability. (b) In the third step, the
feature extractor is then optimized by minimizing the discrepancy between the two fixed classifiers. Feature alignment is also
applied across domains.

while SWD [16] proposes slide wasserstein distance and BCDM
[18] proposes classifier determinacy disparity distance. On the basis
of MCD, CGDM [4] proposes gradient discrepancy minimization,
which forces the feature extractor to further align the gradient
discrepancy between two domains. However, neither of these meth-
ods considers the classification ability of two classifiers, leading
to a suboptimal adapted model. By making two classifiers learn
each other’s discriminating capability, CDAL gradually makes two
classifiers more class discriminative, which effectively solves the
challenges caused by ambiguous target samples.

3 PRELIMINARY
Suppose that the source domain 𝐷𝑠 = {(𝒙𝑠

𝑖
,𝒚𝑠
𝑖
)}𝑛𝑠
𝑖=1 consists of

𝑛𝑠 labeled samples, the target domain 𝐷𝑡 = {(𝒙𝑡
𝑖
)}𝑛𝑡
𝑖=1 consists of

𝑛𝑡 unlabeled samples. The source domain and the target domain
have the same label space {1, 2, . . . , 𝐾}, but with different data
distributions. Our goal is to transfer source domain knowledge to
the target domain so that the adapted model can correctly classify
the target samples.

Bi-classifier adversarial learningmethods [16, 18, 33] usually
have three steps. In the first step, the feature extractor 𝑔 and two
classifiersℎ1 andℎ2 are trained based on the labeled source samples,
which makes the model fit the distribution of the source domain.
The objective function is defined as

min
𝑔,ℎ1,ℎ2

L𝑐𝑙𝑠 (𝐷𝑠 ) =
1
2

2∑︁
𝑗=1
E𝒙𝑠

𝑖
∈𝐷𝑠

L𝑐𝑒 (𝒑𝑠𝑖, 𝑗 ,𝒚
𝑠
𝑖 ), (1)

where L𝑐𝑒 (·, ·) represents the cross entropy function. 𝒑𝑠
𝑖, 𝑗

means
the prediction of the classifier ℎ 𝑗 respect to the source sample 𝒙𝑠

𝑖
.

In the second step, the feature extractor 𝑔 is frozen, and two
classifiers ℎ1 and ℎ2 are updated by maximizing the prediction
discrepancy for unlabeled target samples to find the target samples
out of the support of source distribution while minimizing the cross
entropy for labeled source samples as follows,

min
ℎ1,ℎ2

L𝑐𝑙𝑠 (𝐷𝑠 ) − L𝑑𝑖𝑠 (𝐷𝑡 ), (2)

where
L𝑑𝑖𝑠 (X) = E𝒙∈X𝑑𝑖𝑠𝑡 (𝒑1,𝒑2). (3)

Here, 𝒑1 and 𝒑2 are predictions of two classifiers respect to the
sample 𝒙 , respectively. The function 𝑑𝑖𝑠𝑡 (𝒑1,𝒑2) measures the dis-
crepancy between 𝒑1 and 𝒑2 where the traditional L1 norm [4, 33],
slide wasserstein distance [16], classifier determinacy disparity [18]
can be used.

In the third step, the feature extractor 𝑔 is updated to align the
distribution between two domains by minimizing the prediction dis-
crepancy of unlabeled target samples with the fixed two classifiers
as

min
𝑔

L𝑑𝑖𝑠 (𝐷𝑡 ) . (4)
In summary, traditional bi-classifiers adversarial learning meth-

ods [16, 18, 33] align distribution between two domains by playing
a minimax game between feature extractor and two classifiers.
4 METHOD
Overview. We adopt the existing bi-classifier adversarial learning
paradigm with three steps. In the first step, our method is con-
sistent with traditional bi-classifier adversarial learning methods,
using labeled source samples to train the feature extractor 𝑔 and
two classifiers ℎ1 and ℎ2. Furthermore, we introduce a memory to
store𝑚 source features for each category. Through the memory,
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the source cluster center of each category can be approximately
obtained efficiently. As shown in Figure 2, in the second step, an
Expertise-aware Classifier Interference (ECI) strategy is employed.
In reference to the pseudo labels estimated based on the memory
at the beginning of each epoch, the target samples are divided into
two subsets, each of which represents those better predicted by the
classifiers ℎ1 and ℎ2, respectively. One classifier maximizes the pre-
diction discrepancy against the other classifier on the subset where
it yields better prediction and minimizes the prediction discrepancy
on another subset where it yields worse prediction. In the final step,
along with the original prediction discrepancy minimization, the
feature representations of the target domain training samples are
aligned to source cluster centers, which are calculated based on
memory, to perform conditional distribution alignment.
4.1 Expertise-aware classifier interference
4.1.1 Pseudo-labeling target samples. The pseudo-labeling is based
on clustering. To obtain the cluster center of each category of the
source domain in real time, a memory is constructed to save part
source features. At the beginning of training, we sweep the source
domain and randomly select 𝑚 source sample features for each
category and store them in memory. Since the source domain data
is labeled, any source samples can be quickly fitted by the model
and their features are highly discriminative. Therefore, to ensure
the real time nature of memory, in each iteration, it is updated by
replacing the original stored features with the source features in
the current batch for each category based on the first in first out
principle.

Then, the memory is used to calculate source cluster centers
which are regarded as initial cluster centers of K-means clustering
algorithm [14]. The specific steps at the beginning of each epoch are
as follows. (1) Each source cluster center is approximately calculated
by the labeled source samples in memory as 𝒄𝑠

𝑘
= 1

𝑚

∑𝑚
𝑖=1 𝒇

𝑠,𝑘
𝑖

,
𝑘 ∈ {1, 2, . . . , 𝐾}, where 𝒇𝑠,𝑘

𝑖
is the 𝑖-th sample feature respect to

𝑘-th category in the memory. (2) K-means clustering algorithm [14]
is used to cluster the target samples. The initial cluster centers
are initialized as the source cluster centers, i.e., 𝒄𝑡

𝑘
= 𝒄𝑠

𝑘
. (3) Each

target sample calculates its distance to each cluster center to obtain
a pseudo label, that is, 𝒚̂𝑡

𝑖
= argmin𝑘 𝑐𝑜𝑠 (𝑔(𝒙𝑡𝑖 ), 𝒄

𝑡
𝑘
), where the

𝑐𝑜𝑠 (·, ·) is the cosine distance function; then, the cluster center
is updated according to the current pseudo labels of the target
domain, i.e., 𝒄𝑡

𝑘
= 1

𝑛𝑡𝑘

∑𝑛𝑡
𝑖=1 1𝒚̂𝑡

𝑖
=𝑘𝑔(𝒙𝑡𝑖 ), 𝑗 ∈ {1, 2, . . . , 𝐾}, where

𝑛𝑡𝑘 =
∑𝑛𝑡
𝑖=1 1𝒚̂𝑡

𝑖
=𝑘 . We repeat the above procedure (3) and (4) until

the algorithm converges. After this step, all target domain samples
can get their pseudo labels. For convenience, we express these
pseudo labels using one hot vector as {𝒚̃𝑡

𝑖
}𝑛𝑡
𝑖=1.

4.1.2 Expertise-aware classifier interference (ECI). Our ECI strat-
egy aims to improve the second step of traditional bi-classifier
adversarial learning methods. In this step, the two classifiers are
optimized while the feature extractor is fixed. As mentioned be-
fore, the traditional methods maximize the prediction discrepancy,
making the predictions inconsistent and yielding more ambiguous
target samples. ECI is designed for solving this problem.

Specifically, ECI first needs to know which target samples can
be better classified by ℎ1 or ℎ2. So the first step is dividing the
target samples into two subsets which correspond to the ℎ1 and

ℎ2 respectively. At each iteration, given a batch of target sam-
ples {𝒙𝑡

𝑖
}𝐵𝑡
𝑖=1, their predictions from two classifiers are {𝒑𝑡

𝑖,1}
𝐵𝑡

𝑖=1,
{𝒑𝑡
𝑖,2}

𝐵𝑡

𝑖=1, respectively. Since the target domain has no label infor-
mation, pseudo label, which is described in Section 4.1.1, is used to
approximate the current label information. The Kullback-Leibler
(KL) divergence [10], 𝐾𝐿(𝑃 |𝑄) = ∑

𝑝𝑖 log( 𝑝𝑖𝑞𝑖 ), can be used to cal-
culate the similarity between the classification prediction and the
one-hot pseudo label vector for each sample. If the KL divergence
is small, it means the classification prediction is close to the pseudo
label. So for a specific target sample, if the KL divergence corre-
sponding to a classifier is smaller, without losing generality, we can
consider this classifier performs better on this sample. Based on
this point, the target samples are split into two parts as:

𝐵𝑡1 = {𝑥𝑡
𝑖
|𝐾𝐿(𝒚̃𝑡

𝑖
,𝒑𝑡
𝑖,1) < 𝐾𝐿(𝒚̃

𝑡
𝑖
,𝒑𝑡
𝑖,2)},

𝐵𝑡2 = {𝑥𝑡
𝑖
|𝐾𝐿(𝒚̃𝑡

𝑖
,𝒑𝑡
𝑖,1) > 𝐾𝐿(𝒚̃

𝑡
𝑖
,𝒑𝑡
𝑖,2)},

where the sets 𝐵𝑡1 and 𝐵
𝑡
2 correspond to the classifiers ℎ1 and ℎ2

respectively where their performances are better.
As traditional bi-classifier adversarial learning methods, the tar-

get domain samples out of source distribution are found by maxi-
mizing the prediction discrepancy, while our ECI strategy further
reduces the ambiguous samples as much as possible. In order to
achieve the above two optimizations at the same time, the impor-
tance of using the ECI strategy to divide the samples is reflected.
Specifically, for updating the classifierℎ1, it can perform better than
ℎ2 on 𝐵𝑡1 set according to the ECI strategy, so it is further required
to maximize the prediction discrepancy with ℎ2 to detect the target
samples excluded by the support of the source domain [33]; while
ℎ1 perform worse than ℎ2 on 𝐵𝑡2 set, which may predict incorrectly
and yield the ambiguous target samples on 𝐵𝑡2 set, so it is needed to
minimize the prediction discrepancy to correct its prediction. The
loss function of ℎ1 is as follows:

min
ℎ1

L𝑑𝑖𝑠1 (𝐷𝑡 ) = −L𝑑𝑖𝑠 (𝐵𝑡1) + L𝑑𝑖𝑠 (𝐵𝑡2), (5)

where the first term pushes the prediction of classifier ℎ1 far away
from that of ℎ2 on the 𝐵𝑡1 set while the second term let it close to
prediction of ℎ2 on the 𝐵𝑡2 set, the definition of L𝑑𝑖𝑠 (·) refers to Eq.
(3). On the other hand, for updating the classifier ℎ2, the objective
function is defined as:

min
ℎ2

L𝑑𝑖𝑠2 (𝐷𝑡 ) = L𝑑𝑖𝑠 (𝐵𝑡1) − L𝑑𝑖𝑠 (𝐵𝑡2), (6)

where the second term pushes the prediction of classifier ℎ2 far
away from that of ℎ1 on the 𝐵𝑡2 set while the first term enforces it
close to the prediction of ℎ1 on the 𝐵𝑡1 set.

Furthermore, we need the updated classifiers also work in the
source domain. By combing above objective functions, the overall
loss of our ECI strategy is formulated as,

min
ℎ1
E𝑥𝑠

𝑖
∈𝐷𝑠

L𝑐𝑒 (ℎ1 (𝑔(𝒙𝑠𝑖 )),𝒚
𝑠
𝑖 ) + L𝑑𝑖𝑠1 (𝐷𝑡 ), (7)

min
ℎ2
E𝑥𝑠

𝑖
∈𝐷𝑠

L𝑐𝑒 (ℎ2 (𝑔(𝒙𝑠𝑖 )),𝒚
𝑠
𝑖 ) + L𝑑𝑖𝑠2 (𝐷𝑡 ) . (8)

Remark. In addition to using KL divergence to divide the target
domain samples into two subsets, we also consider using the self-
entropy as the evaluation criterion, which is shown in the Model
Analysis (Section 5.2).



Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation MM ’22, October 10–14, 2022, Lisboa, Portugal

4.1.3 Analysis. Here we interpret how our ECI strategy can make
the two classifiers more class discriminative compared with the
traditional counterpart. For easier explanation, we consider a two-
class classification task, i.e., the label space Y = {1, 2}. Given a
target domain sample 𝑥 , let the predictions of the two classifiers
be 𝑃1 = [𝑝1,1, 𝑝1,2] and 𝑃2 = [𝑝2,1, 𝑝2,2], respectively; The pseudo
label 𝒚̃ of 𝑥 is [1, 0] (i.e., of class 1) and the function 𝑑𝑖𝑠𝑡 (·, ·) in
Eq. (3) is L1 normalized; Without loss of generality, we assume
the classifier ℎ1 performs better, satisfying the following relations:
𝑝1,1 > 𝑝2,1, 𝑝1,2 < 𝑝2,2, 𝐾𝐿(𝒚̃, 𝑃1) < 𝐾𝐿(𝒚̃, 𝑃2), and 𝑥 ∈ 𝐵𝑡1.

With the ECI strategy, the loss functions derived on this sample
𝑥 for updating the two classifiers ℎ1 and ℎ2 can be written as:

min
ℎ1

L𝑑𝑖𝑠1 = −|𝑃1 − 𝑃2 | = −𝑝1,1 + 𝑝2,1 + 𝑝1,2 − 𝑝2,2, (9)

min
ℎ2

L𝑑𝑖𝑠2 = |𝑃1 − 𝑃2 | = 𝑝1,1 − 𝑝2,1 − 𝑝1,2 + 𝑝2,2, (10)

where Eq. (9) focuses on optimizing ℎ1, with 𝑃2 regarded as the ob-
jective constant. Similarly, Eq. (10) is for updating ℎ2. The updating
formulation is expressed as:

𝑃1 = 𝑃1 − 𝜃
𝜕L𝑑𝑖𝑠1
𝜕𝑃1

= [𝑝1,1 + 𝜃, 𝑝1,2 − 𝜃 ], (11)

𝑃2 = 𝑃2 − 𝜃
𝜕L𝑑𝑖𝑠2
𝜕𝑃2

= [𝑝2,1 + 𝜃, 𝑝2,2 − 𝜃 ], (12)

where 𝜃 > 0 is the learning rate. By the KL formula, we have
𝐾𝐿(𝒚̃, 𝑃𝑖 ) < 𝐾𝐿(𝒚̃, 𝑃𝑖 ) with 𝑖 ∈ {1, 2}. This means the two classifiers
both become more discriminative after the updating as above.

In comparison, the traditional bi-classifier adversarial learning
methods maximize the prediction discrepancy between the two
classifiers. This is the same as our ECI strategy when optimizing
the classifier ℎ1. However, for updating the classifier ℎ2, they still
maximize the prediction discrepancy as follows:

min
ℎ2

L𝑑𝑖𝑠2 = −|𝑃1 − 𝑃2 | = −𝑝1,1 + 𝑝2,1 + 𝑝1,2 − 𝑝2,2 . (13)

The updated 𝑃2 then becomes:

𝑃2 = 𝑃2 − 𝜃
𝜕L𝑑𝑖𝑠2
𝜕𝑃2

= [𝑝2,1 − 𝜃, 𝑝2,2 + 𝜃 ] . (14)

In this case, 𝐾𝐿(𝒚̃, 𝑃2) < 𝐾𝐿(𝒚̃, 𝑃2). This means the classifier ℎ2
degrades on the target sample 𝑥 , i.e., classifying it to class 2 (a
wrong prediction). However, the updated classifier ℎ1 can instead
correctly classify 𝑥 to class 1, making 𝑥 as an ambiguous sample
with inconsistent predictions by the two classifiers. In short, given
a target sample, the traditional bi-classifier adversarial learning
methods improve the better-performing classifier whilst degrading
the worse-performing one. On the contrary, our ECI improves both
classifiers as elaborated above.

4.2 Representation alignment
Traditional bi-classifier adversarial learning methods typically try
tominimize the prediction discrepancy of target samples to optimize
feature extractor 𝑔 whilst aligning the features across domains, as
formulated in Eq. (4).Whilst easy target samples are often aligned to
correct classes, this strategy is ineffective in tackling the ambiguous
target samples which may be detected by misclassified classifier
and performed an inaccurate class-wise distribution alignment [4].

Algorithm 1 Class Discriminative Adversarial Learning
Input: Source domain 𝐷𝑠 = {(𝒙𝑠

𝑖
,𝒚𝑠
𝑖
)}𝑛𝑠
𝑖=1, target domain

𝐷𝑡 = {(𝒙𝑡
𝑖
)}𝑛𝑡
𝑖=1, the epoch number 𝑇 , the mini-batch number𝑀 .

Output: An adapted model.
Procedure:
1: for 𝑡 = 1:𝑇 do
2: Update pseudo labels of target domain {𝒚𝑡

𝑖
}𝑛𝑡
𝑖=1 ;

3: for𝑚 = 1:𝑀 do
4: Forward a mini-batch through the model;
5: Step 1: Train 𝑔, ℎ1, ℎ2 based on labeled source samples

(Eq. (1));
6: Step 2: Train ℎ1, ℎ2 based on both labeled source samples

and pseudo-labeled target samples (Eqs.(7) and (8)) ;
7: Step 3: Update memory based on source samples and

train 𝑔 based on pseudo-labeled target samples (Eq. (16)) ;
8: end for
9: end for
10: return Adapted model.

To address this problem, a representation regularization is fur-
ther imposed for conditional distribution alignment between two
domains. Formally, it forces the features of target samples being
close to the source distribution, i.e., pushed away from ambiguous
regions. This regularization is designed as follows:

L𝑐𝑙𝑢 (𝐷) =
1
𝐾

𝐾∑︁
𝑘=1






 1
𝑛𝑡 𝑗

𝑛𝑡∑︁
𝑖=1

1𝑦̂𝑡
𝑖
=𝑗𝜙 (𝑔(𝒙𝑡𝑖 )) − 𝜙 (𝒄

𝑠
𝑘
)





2 (15)

where 𝒄𝑠
𝑘
is the 𝑘-th class center calculated based on the up-to-date

memory (Section 4.1.1), 𝐷 = {𝐷𝑠 , 𝐷𝑡 }, and 𝑛𝑡 𝑗 =
∑𝑛𝑡
𝑖=1 1𝑦̂𝑡𝑖 =𝑗

. 𝜙 is a
Gaussian kernel function often used in UDA. Conceptually,L𝑐𝑙𝑢 (𝐷)
aligns the per-category representation centers across source and tar-
get domains by encouraging the semantic correspondence between
pseudo labels and genuine labels.

Combining the traditional alignment constraint (Eq. (4)) and
proposed regularization, our representation alignment objective is
formed as:

min
𝑔

L𝑑𝑖𝑠 (𝐷𝑡 ) + 𝛼L𝑐𝑙𝑢 (𝐷) . (16)

where 𝛼 > 0 is a trade-off hyperparameter.
In training, we repeat the above process until the model con-

verges. At test time, the mean prediction results from two adapted
classifiers are used as the test results. Our algorithm is summarized
in Algorithm 1.

5 EXPERIMENTS
Datasets. In our experiments we use three standard UDA datasets.
ImageCLEF[25]1 is a popular dataset, it contains three domains:
Caltech-256 (C), ImageNet ILSVRC2012 (I) and PASCALVOC2012
(P). There are 600 images in each domain and 50 for each category.
Office-Home[40]2 is a more challenging dataset with 15,588 images
from 65 classes in four domains: Artistic images (A), Clip-Art images
(C), Product images (P) and RealWorld images (R). Visda-17[31]3 is

1https://www.imageclef.org/2014/adaptation
2https://www.hemanthdv.org/officeHomeDataset.html
3http://ai.bu.edu/visda-2017/
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Table 1: Comparison with the state-of-the-art methods on ImageCLEF dataset. Metric: classification accuracy (%); Backbone:
ResNet50.

Method Venue I→P P→I I→C C→I C→P P→C avg
ResNet-50 [9] CVPR16 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN [6] CVPR16 75.0 86.0 96.2 87.0 74.3 91.5 85.0
CDAN+E[24] NIPS18 77.7 90.7 97.7 91.3 74.2 94.3 87.7
A2LP[45] ECCV20 79.6 92.7 96.7 92.5 78.9 96.0 89.4
ETD[17] CVPR20 81.0 91.7 97.9 93.3 79.5 95.0 89.7
CKB+MMD[27] CVPR21 80.7 92.2 96.5 92.2 79.9 96.7 89.7
CGDM [4] CVPR21 78.7 93.3 97.5 92.7 79.2 95.7 89.5
BCDM [18] AAAI21 79.5 93.2 96.8 91.3 78.9 95.8 89.3
MCD [33] CVPR18 77.3 89.2 92.7 88.2 71.0 92.3 85.1
MCD+ECI Ours 79.3 ±0.2 92.5 ±0.1 96.3 ±0.1 90.5±0.2 78.0±0.2 94.8±0.1 88.6
SWD [16] CVPR19 78.3 90.3 93.2 89.7 73.3 93.8 86.4
SWD+ECI Ours 79.8±0.1 92.7±0.2 96.8±0.0 92.9±0.1 77.3±0.2 96.5±0.1 89.3
CDAL Ours 80.4±0.1 93.7±0.1 97.8±0.0 93.3±0.1 80.2±0.3 97.5±0.2 90.5

Table 2: Comparisons with the state-of-the-art methods on Office-Home dataset. Metric: classification accuracy (%); Backbone:
ResNet50.

Method Venue A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P avg
ResNet-50[9] CVPR16 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [6] CVPR16 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN+E [24] NIPS18 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
ALDA [2] AAAI20 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
MDD+IA [11] ICML20 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5
MetaAlign [41] CVPR21 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
CKB+MMD[27] CVPR21 54.2 74.1 77.5 64.6 72.2 71.0 64.5 53.4 78.7 72.6 58.4 82.8 68.7
TSA [19] CVPR21 53.6 75.1 78.3 64.4 73.7 72.5 62.3 49.4 77.5 72.2 58.8 82.1 68.3
TCM[43] ICCV21 58.6 74.4 79.6 64.5 74.0 75.1 64.6 56.2 80.9 74.6 60.7 84.7 70.7
SCDA[20] ICCV21 57.5 76.9 80.3 65.7 74.9 74.5 65.5 53.6 79.8 74.5 59.6 83.7 70.5
MCD[33] CVPR18 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
MCD+ECI Ours 57.4 74.0 78.6 62.3 73.7 75.0 64.4 54.5 81.1 73.3 60.3 83.7 69.9
SWD[16] CVPR19 51.3 70.3 75.0 56.2 69.4 71.6 59.8 53.8 80.2 71.1 59.2 83.4 66.8
SWD+ECI Ours 58.0 75.4 79.0 64.1 73.3 74.9 64.6 54.1 81.1 72.5 60.5 83.8 70.1
CDAL Ours 59.5 77.8 80.0 67.0 77.1 76.6 66.6 56.2 81.8 74.3 60.6 84.6 71.8

±0.3 ±0.1 ±0.1 ±0.2 ±0.2 ±0.0 ±0.2 ±0.1 ±0.0 ±0.1 ±0.0 ±0.1

a challenging benchmark for domain adaptation which focuses on
the 12-class synthesis-to-real object recognition task. The source
domain contains 152,397 synthetic images and the target domain
has 55,388 real object images.
Implementation details. Our experiment is performed on the
Pytorch platform. Each experiment was run 5 times to enhance the
robustness of the results. For fair comparison, all models use the
same feature extractor. Specifically, Resnet50 is used as the back-
bone on the ImageCLEF and Office-home datasets, and Resnet101 is
used on the Visda-17 dataset. In addition, two classifiers are linear
networks with one layer. The SGD optimizer is chosen to update the
model and CosineAnnealingLR [26] is used to update the learning
rate of the optimizer. For the hyperparameter 𝛼 , it set as 0.2 for
Eq. (16) in all experiments. For hyperparameter 𝑚, which is the
memory size of the feature stored for each category, it set as 6/10/10
for Office-Home/ImageCLEF/Visda17. Our method uses MCD [33]
as baseline for convenience.
Competitors. To prove the effectiveness of our method, we com-
pare our method with the following state-of-the-art methods: the
methods based on statistic moment matching are CKB+MMD [27],

ETD [17], TSA [19] and TCM [43]; the methods based on adversarial
learning framework are DANN [6], CDAN+E [24], MDD+IA [11],
ALDA [2], MetaAlign [41], DWL [42], CLS [22] and SCDA [20]. In
addition, MCD [33], SWD [16], BCDM [18] and CGDM [4], which
belong to the category of bi-classifier adversarial learning and are
related to our method. ’MCD+ECI’ and ’SWD+ECI’ represent the
corresponding methods where ECI strategy is applied.
5.1 Result analysis
Results on ImageCLEF. The comparisons between our method
and other state-of-the-art UDA methods are shown in Table 1. Our
method CDAL significantly outperforms other methods and obtains
the best overall performance. The reason is our method requires
the model to be more class discriminative when performing distri-
bution alignment. Compared with CGDM, which applies gradient
discrepancy alignment to solve the problem of ambiguous target
sample, CDAL yields 1.0% improvement, which proves that our
solution can handle ambiguous target samples effectively. Com-
pared with previous top performing ETD and CKB+MMD, both of
them belong to statistic moment matching, CDAL also yields 0.8%
improvement, which proves the effectiveness of our method.
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Table 3: Comparison with the state-of-the-art methods on Visda-17 dataset. Metric: per-class classification accuracy (%); Backbone:
ResNet101.

Method Venue plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
ResNet-101 [9] CVPR16 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [6] JMLR16 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [24] NIPS18 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
ALDA [2] AAAI20 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
BCDM [18] AAAI21 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4
DWL [42] CVPR21 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1
CGDM [4] CVPR21 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
CLS [22] ICCV21 92.6 84.5 73.7 72.7 88.5 83.3 89.1 77.6 89.5 89.2 85.8 72.7 81.6
MCD[33] CVPR18 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
MCD+ECI Ours 93.4 77.2 76.9 51.2 89.9 92.1 83.4 74.8 84.7 72.3 85.8 55.2 78.1
SWD[16] CVPR19 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
SWD+ECI Ours 93.6 78.6 76.7 51.1 90.3 93.2 83.4 75.7 85.2 75.6 85.8 57.0 78.9
CDAL Ours 97.5 84.9 81.0 70.5 97.1 97.3 90.6 80.9 96.2 94.9 88.2 48.7 85.7

Results on Office-Home. The results are shown in Table 2. Our
method achieves the best accuracy on 6 out of 12 tasks in total
and overall performance. Compared with TCM and MetaAlign, our
method leads the overall performance by 1.1% and 0.5% respectively.
Especially on tasks C→P and C→R, the performance of our method
has been improved by 2.2% and 1.5%, respectively, compared with
the state-of-the-art results.
Results on Visda-17. In this dataset, the per-class classification
accuracy is reported which is shown in Table 3. And our method
yields a huge improvement comparedwith othermethod. Compared
with the previous best performing method BCDM, which is also
based on bi-classifier adversarial learning, our method improves
the accuracy by 2.3%. From Table 1-3, all tasks have proved that
MCD+ECI is better than MCD and SWD+ECI is better than SWD,
which proves effectiveness of our ECI strategy.

5.2 Model analysis

Table 4: Stability analysis of ECI strategy respect to different
criteria.

Method I→P P→I I→C C→I C→P P→C
MCD 77.3 89.2 92.7 88.2 71.0 92.3
MCD+ECI(SE) 78.0 91.8 96.8 91.7 77.8 95.0
MCD+ECI(KL) 79.3 92.5 96.3 90.5 78.0 94.8

ECI strategy based on self-entropy. In Section 4.1.2, the pseudo
labels are used to divide the target samples into two parts based
on KL divergence. Self-entropy is also popular for many methods
to judge the quality of prediction [13, 24]. Here, we further use
self-entropy to analyze the stability of our ECI strategy. The two
parts are defined as

𝐵𝑡1 = {𝑥𝑡𝑖 |𝑆𝐸 (𝒑
𝑡
1) < 𝑆𝐸 (𝒑

𝑡
2)}, (17)

𝐵𝑡2 = {𝑥𝑡𝑖 |𝑆𝐸 (𝒑
𝑡
1) > 𝑆𝐸 (𝒑

𝑡
2)} (18)

where 𝑆𝐸 (𝑃) = −∑
𝑝𝑖 log 𝑝𝑖 represents self-entropy[34]. The re-

sults are shown in Table 4, where MCD+ECI(SE) represents the
method of dividing samples based on self-entropy and the second
step of MCD is modified using our ECI strategy. As shown in Table

4, the performance of MCD is also improved. It shows the stability
of our ECI strategy to the classification quality criterion.

Table 5: Comparison of number of ambiguous target samples.

Method I→P P→I I→C C→I C→P P→C
MCD 10 11 10 17 31 5
MCD+ECI 6 7 4 6 15 2
CDAL 5 4 3 2 6 2

The performance of reducing ambiguous target samples. The
central point of our method is reducing the ambiguous target do-
main samples, such that the features can be discriminatively aligned.
Therefore, we count the number of ambiguous samples for the
trained models using different strategies, where MCD is original
method [33], MCD+ECI means the ECI strategy is applied based on
MCD, and CDAL is our complete algorithm where feature regular-
ization is applied. The result is shown in Table 5, which shows that
our proposed method can effectively reduce the number of ambigu-
ous samples by both of ECI strategy and feature regularization.

Table 6: The ablation study of second step.

Method I→P P→I I→C C→I C→P P→C
PSE 74.0 89.7 93.2 88.6 66.8 93.0
MCD 77.3 89.2 92.7 88.2 71.0 92.3
MCD+ECI 79.3 92.5 96.3 90.5 78.0 94.8

The ablation study of second step. In this experiment, we modify
the second step of the original MCD by using the pseudo label,
which is described in Section 4.1.1, and the ECI strategy, respectively.
The results are shown in Table 6. For PSE, we directly use pseudo
labels to train two classifiers for target domain samples in the
second step as baseline. From the result in Table 6, PSE can slightly
outperformMCD in some simple tasks, such as P→I, I→C, C→I and
P→C, but it has a huge lag compared toMCD on some difficult tasks,
such as I→P and C→P. This is because the domain discrepancy
is often large on difficult tasks, resulting in relatively large noise
of pseudo labels, which affects the performance of the model. In
addition, compared with MCD+ECI and PSE, MCD+ECI leads on
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Figure 3: Feature visualizations by T-SNE. The learned features by different combinations of strategies are shown on the task
I(red)→P(green) of ImageCLEF dataset, (a) MCD, (b) MCD+ECI, (c) MCD+CLU, (d) CDAL.

all tasks. In fact, both are essentially class discriminative learning,
except that PSE uses hard pseudo labels while our method uses the
prediction of another classifier as a soft label for learning, which
has better generalization ability [29].

Table 7: The ablation study of full algorithm.

Method I→P P→I I→C C→I C→P P→C
MCD 77.3 89.2 92.7 88.2 71.0 92.3
MCD+ECI 79.3 92.5 96.3 90.5 78.0 94.8
MCD+CLU 79.2 93.1 97.2 91.8 76.4 96.2
CDAL 80.4 93.7 97.8 93.3 80.2 97.5

The ablation study of full algorithm. To analyze the role of
each part of our method, we conduct an ablation study on Image-
CLEF dataset, which uses the original MCD as the baseline, and
the experimental results are shown in Table 7. From Table 7, we
can get the following conclusions: (1) Due to no class discrimina-
tive information used in the original MCD method, the ambiguous
target samples may match to wrong classes, which makes a subop-
timal adapted model. (2) By using ECI strategy, MCD+ECI can well
solve the problem of ambiguous target samples, so as to improve
the performance of model. In addition, MCD+CLU uses the rep-
resentation regularization loss L𝑐𝑙𝑢 to explicitly perform feature
distribution alignment between two domains, which can directly
give the ambiguous samples an optimization direction. (3) CDAL
uses the above two strategies to optimize the model jointly, and
finally achieves the best results.
Visual analysis. To give an intuitive understanding of our method,
the features of the transfer task I→P on ImageCLEF dataset are
visualized by t-SNE [28] in Fig. 3. It presents consistent observa-
tions :(a) MCD, (b) MCD+ECI, (c) MCD+CLU, (d) CDAL. It can be
observed that the features in Fig. 3(a) are very scattered. Compared
with Fig. 3(a), the features in Fig. 3(b) are more concentrated due
to the influence of ECI strategy. Compared with Fig. 3(a), the fea-
tures in Fig. 3(c) are also more concentrated due to the influence
of explicit alignment loss L𝑐𝑙𝑢 . Finally, the features learned by our
method, which are the original MCD equipped with the proposed
ECI strategy and explicit alignment loss, are shown in Fig. 3(d).
Compared with the features learned by other variants (Fig. 3(a)-Fig.
3(c)), the features in Fig. 3(d) are the most concentrated.
Parameter Analysis. To verify the robustness of our method, all
transfer tasks on ImageCLEF are carried to analyze the sensitivity

Figure 4: Sensitivity analysis of (l) loss weight 𝛼 and (r) size
of memory𝑚.
of parameter 𝛼 and 𝑚. For the parameter 𝛼 , which is a balance
hyperparameter in Eq. (16), the experimental result is shown in the
left of Fig. 4, which turns it from 0.01 to 1.0. When 𝛼 changes from
0.01 to 0.2, the accuracy of our method shows an upward trend.
When 𝛼 changes from 0.2 to 1.0, the accuracy of our method can
drop a bit. On the whole, the accuracy of our method does not
change drastically, which proves the robustness of our method. For
the parameter𝑚, which is size of our memory during the training,
the experimental result is shown in the right of Fig. 4, which takes
a value every 2 from 6 to 14. Overall, the change of 𝑚 has little
effect on the accuracy, that is, the model is very robust to𝑚.

6 CONCLUSIONS
In this paper, we investigated the problem of ambiguous target
samples in the bi-classifier adversarial learning which is always
ignored by previous approaches. A Class Discriminative Adver-
sarial Learning (CDAL) method is proposed which employs an
ECI strategy and a representation regularization based on tradi-
tional bi-classifier adversarial learning. The ECI strategy boost the
two classifiers learning each other to reduce ambiguous target do-
main samples. Instead of only minimizing discrepancy to align the
distribution between two domains, the proposed representation
regularization does explicit feature alignment which forces target
samples close to source distribution and far away ambiguous region.
These two strategies can reduce the ambiguous target samples in
adaptation process. The results on the public datasets prove the
reliability of our method.
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