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Compressed-SDR to HDR Video Reconstruction
Hu Wang, Mao Ye∗, Xiatian Zhu∗, Shuai Li, Xue Li, and Ce Zhu

Abstract—The new generation of organic light emitting diode display is designed to enable the high dynamic range (HDR), going
beyond the standard dynamic range (SDR) supported by the traditional display devices. However, a large quantity of videos are still of
SDR format. Further, most pre-existing videos are compressed at varying degrees for minimizing the storage and traffic flow demands.
To enable movie-going experience on new generation devices, converting the compressed SDR videos to the HDR format (i.e.,
compressed-SDR to HDR conversion) is in great demands. The key challenge with this new problem is how to solve the intrinsic
many-to-many mapping issue. However, without constraining the solution space or simply imitating the inverse camera imaging
pipeline in stages, existing SDR-to-HDR methods can not formulate the HDR video generation process explicitly. Besides, they ignore
the fact that videos are often compressed. To address these challenges, in this work we propose a novel imaging knowledge-inspired
parallel networks (termed as KPNet) for compressed-SDR to HDR (CSDR-to-HDR) video reconstruction. KPNet has two key designs:
Knowledge-Inspired Block (KIB) and Information Fusion Module (IFM). Concretely, mathematically formulated using some priors with
compressed videos, our conversion from a CSDR-to-HDR video reconstruction is conceptually divided into four synergistic parts:
reducing compression artifacts, recovering missing details, adjusting imaging parameters, and reducing image noise. We approximate
this process by a compact KIB. To capture richer details, we learn HDR representations with a set of KIBs connected in parallel and
fused with the IFM. Extensive evaluations show that our KPNet achieves superior performance over the state-of-the-art methods. The
dataset and code are available at https://wanghu178.github.io/KPNet/.

Index Terms—Standard Dynamic Range (SDR), High Dynamic Range (HDR), Compressed SDR video, Video Reconstruction.

✦

1 INTRODUCTION

DURING the past few years, the popularity of high
dynamic range (HDR) display devices in daily life is

greatly increased. However, most of existing video contents
are still in the standard dynamic range (SDR) format. In gen-
eral, SDR refers to a dynamic range standard widely used
in video and television industry, often the standard dynamic
range defined under the ITU (International Telecommunica-
tion Union) and the ITU-R (International Television Union)
standards. In comparison, LDR (Low Dynamic Range) refers
to the images/videos with small dynamic range. Typically
videos are highly compressed for saving the coding bit rate
and storage space. SDR videos with compression artifacts
cannot make the full use of the advantages of HDR display
(wide color gamut, high peak brightness, high contrast,
etc.), seriously reducing the quality of experience. Therefore,
there is an urgent need to reconstruct the HDR version from
compressed SDR videos. This task, denoted as Compressed-
SDR to HDR (CSDR-to-HDR) video reconstruction, is of
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Fig. 1: Comparing our approach with the existing methods
based on reversing the camera imaging pipeline. (a) Multi-
ple neural networks are designed to approximate the stages
of reversing camera imaging pipeline with (b) showing a
representative camera imaging process. (c) Our preliminary
method KUNet [1] uses a basic building block of UNet to
simulate the LDR-to-HDR imaging formula. (d) Our KPNet
introduced in this work further adopts a parallel structure
to solve the shortcomings of the preliminary cascaded struc-
ture for solving the new more challenging CSDR-to-HDR
video reconstruction task.

great practical value, but receives little attention yet in the
research community. There are two key causes. First, nu-
merous standards are in place for HDR videos and they are
not uniform. Second, no dataset exists for enabling model
training and testing.

This work aims at promoting the development of this
unexplored problem. CSDR-to-HDR video reconstruction

https://wanghu178.github.io/KPNet/
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is a severely ill-posed problem since multiple mappings
exist between the compressed SDR and HDR videos. While
there are individual researches on SDR-to-HDR video recon-
struction and compressed video quality enhancement, none
is sufficiently effective for this more challenging CSDR-
to-HDR video reconstruction problem. Moreover, going
beyond simply combining the two constituent tasks, it
presents a new many-to-many mapping problem.

For SDR-to-HDR video reconstruction, three different
approaches have been proposed as follows. Single-exposure
HDR video reconstruction uses single-exposure SDR frame
to reconstruct HDR video [2]. The key of this method is
how to restore the overexposed information and bit depth
extension (see a common prior strategy in Fig. 1 (a)). Multi-
exposure stack HDR synthesis constructs HDR video from
sequences with alternating exposures. The problem with
this approach [2] is how to align the video frames with dif-
ferent exposures and the acquisition of the data set. The last
methods use different hardwares to construct HDR videos,
for example, per-pixel exposure [3], modulo camera [4] and
neuromorphic [5]. Obviously, these methods require special
hardware for processing and are not universally applicable.

For the quality enhancement of compressed SDR videos,
there exist two mainstream categories of methods: single-
frame or multi-frame based. For the former (e.g., DNCNN [6],
QE-CNN [7] and RBQE [8]), previous methods use the
spatial information to enhance the quality, which can be
adapted to videos by restoring each frame individually. For
the latter, spatial-temporal information is used to enhance
the frames [9], [10], typically achieving better performance
than the single-frame based methods.

Although many works have emerged for the above two
tasks respectively, their combination has not been investi-
gated for appealing movie-going experience. In this work,
we first investigate what is a good combination order of
the two functions. When putting the quality enhancement
before HDR video reconstruction, its causes the remain-
ing compression artifacts are significantly amplified during
video reconstruction. In case of the inverse order, the quality
enhancement part becomes more challenging, since HDR
video reconstruction is usually highly non-linear and tends
to amplify the compression artifacts.

To address these challenges, in this work we propose
a new Knowledge-inspired Parallel Network (KPNet) for
CSDR-to-HDR video reconstruction, integrating both com-
pressed SDR video prior knowledge and HDR imaging
knowledge in a novel parallel structure (see Fig. 1 (d)). In
particular, we model a compressed-SDR to HDR mathemati-
cal formula with a Knowledge-Inspired Block (KIB) module.
For extracting strong HDR features, this KIB is designed
compactly with the abilities for reducing compressing ar-
tifacts and recovering missing details in overexposed area,
adjusting imaging parameters, reducing SDR imaging noise.
With an elegant parallel design, we further fuse the output
of multiple KIB modules for reconstructing richer details in
HDR videos. Favorably, our model can solve the challenging
ghosting artifacts problem in video reconstruction.

We summarize the contributions as follows. (1) We
present a practical yet understudied problem, namely
CSDR-to-HDR video reconstruction. This is a combination
problem of quality enhancement and SDR-to-HDR video

reconstruction, both of which have been studied in isolation,
presenting more challenges than either. (2) By analyzing
the camera imaging pipeline, we derive a HDR image
restoration formula (see Fig. 1 (b) and (c)). We further extend
this formula to the video domain. Combining with prior
knowledge of compressed video enhancement, we reach a
CSDR-to-HDR video reconstruction formula. This leads to
the introduction of our KIB module design and finally a
novel knowledge-inspired parallel network (KPNet). (3) For
enabling quantitative evaluation of this new problem set-
ting, we extend an existing dataset HDRTV [11] by applying
additional standard compression (e.g., HM16.9). Extensive
experiments show that our KPNet can outperform clearly
the existing alternatives.

This work is an extended version of our IJCAI2022
paper [1]. We introduce several key differences: (1) Studying
a more practical problem setting by additionally taking into
account the video compression factor, typical to many pre-
existing videos. This problem is largely ignored in the com-
munity but practically valuable and useful. (2) Extending
our preliminary model KUNet [1] by architectural modifi-
cation. In particular, our new model can address the prob-
lems of ghosting artifacts and color interruption suffered
by KUNet. (3) Providing more comprehensive experimental
analysis and discussion, including the rationale analysis of
evolving KUNet to the model KPNet.

2 RELATE WORKS

2.1 Multi-exposure Stack HDR Imaging
Using a series of exposure images to compose HDR im-
ages is one of the most common approaches [12]. We
can divide these methods into three types: sequential ex-
posure [13], [14], [15], alternate exposure and with specialized
hardware. The first category produces a single HDR image
using a sequence of exposed SDR images. For example,
Kalantari and Ramamoorthi [13] aligns several SDR images
with different exposures and feeds them into neural net-
works, laying the foundation for multi-exposure synthesis
of HDR images using deep learning. [15], [16] and [14] also
adopt this pipeline, except that they use a more precise
method to align or recover image detail. Despite giving
good results, they are not suitable for HDR video recovery
due to being limited to recovering the HDR version for only
one input frame.

Alternate exposure is a promising direction for HDR video
reconstruction. Kalantari and Ramamoorthi [17] proposed
the first deep learning approach to produce HDR video from
a sequence of alternating exposures. This reconstruction
pipeline consists of two steps. First, optical flow is estimated
using deep neural network, and then another network is
used to obtain fusion weights for merging the aligned
images. Although they exhibit good performance, ghosting
artifacts will appear in the regions with large motions [2].
Inspired by the difficulty of alignment between SDR im-
ages with different exposure and deformable convolution,
DeepHDRVideo [2] constructs a two-stage coarse-to-fine
framework. Combining deformable convolution with HDR
video reconstruction, this method achieves excellent results.
Since most of the existing videos are single exposure SDR
videos, it cannot be directly applied.
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Another option relies on specialized hardware [18], e.g.,
per-pixel exposure [3], scanline exposure/ISO [19], [20], [21],
internal [22], [23] or externalbeam splitter [24] that can split
light to different sensors, modulo camera [4] and neuro-
morphic [5]. Despite their abilities to produce detailed HDR
images/video efficiently on unique equipment. This special-
ized hardware also limits its widespread applications.

2.2 Single-exposure HDR Imaging
Single-exposure HDR imaging has a more flexible solutions,
which can be roughly divided into three types as mentioned
before. For the first approach of direct reconstruction method,
HDRCNN [25] achieves excellent performance in the recov-
ery of overexposed areas. However, this method ignores the
dynamic range expansion in other regional. SR-ITM [26] is a
representative framework for joint SR and single-exposure
HDR. It is used to the video task. Then JSIGAN [27] de-
velops this method and decomposes an LR SDR image into
base layer and detail layer. Subsequently, these two layers
are calculated separately by their respective modules and
then joined together to produce a super-resolution HDR
image. In general, they either directly use the modules
from other research fields, or use some of HDR imaging
knowledge as conditions, without theoretical innovation
introduced. There still exits much room for advancement.

For the multi-exposure stack-based synthesis approach,
DrTMO [28] is the first method of this kind which first
passes an image through CNN to generate SDR images with
different exposures, and then merge these images to gener-
ate HDR images. KIM [29] further extends this method. It
is found that the quality of the generated multi-exposure
images is a significant factor to reconstruct HDR image.

For the reverses camera imaging pipeline approach, three
networks are used to learn the stages of inverse cam-
era pipeline to generate HDR images in singleHDR [30].
Besides, HDRTV [11] also refers to the SDRTV imaging
pipeline and a three-stage network for HDR reconstruc-
tion. Although these methods take advantages of the pri-
ori knowledge of HDR imaging, the HDR reconstruction
component would introduce a large number of cumulative
errors due to strong dependence between these networks.

The aforementioned methods can construct satisfactory
HDR videos for conventional SDR. However, they do not
take into account compressed SDR, thus less satisfactory for
reconstructing HDR videos.

2.3 Single-frame Quality Enhancement
The existing methods can be divided into two categories
JPEG-compressed images quality enhancement and HEVC-
compressed quality enhancement [8]. For the first category,
Dong et al., [31] proposed a pioneering Artifacts Reduction
Convolution Neural Network (AR-CNN), which facilitates
the development of CNN-based quality enhancement of
JPEG-compressed images. Inspired by dual-domain sparse
coding, deep Dual-Domain Convolution neural Network
(DDCN) [6] is proposed for JPEG compressed artifacts re-
moval. This model uses the quantization prior of JPEG com-
pression and achieves good results. Recently, SwinIR [32]
uses a swin transformer for JPEG compression artifact
reduction and achieves art results. However, due to the

different coding strategies of HEVC, these approaches can-
not be directly used for HEVC-compressed image quality
enhancement, especially those utilizing the prior of JPEG
compression.

For HEVC-compressed image quality enhancement, the
first deep learning-based method was proposed by Wang
et al. [33]. The goal is for code rate savings. Then, Yang
et al. [7] proposed a Quality Enhancement Convolutional
Neural Network (QE-CNN), capable of handling not only
I frames but also P/B frames. Recently, through a dynamic
deep neural network which embeds an early-exit strategy
to resource-efficient blind quality enhancement (RBQE),
RBQE [8] achieves strong performance in terms of both
blind quality enhancement and resource efficient.

Note, HDR image reconstruction is fundamentally dif-
ferent from compressed SDR image enhancement. Single-
frame quality enhancement methods cannot be directly ap-
plied to the problem of CSDR-to-HDR video reconstruction.
To overcome this challenge, in this work we propose to com-
bine priori knowledge of compressed SDR image quality
enhancement with a HDR image imaging pipeline.

3 ANALYSIS OF HDR IMAGE RECONSTRUCTION

SDR image formation formula [34] is proposed as follows,

IS =

{ t
gϕ+ I0 + n, Unsaturation;

Imax, Saturation
(1)

where t is the exposure time, g is the sensor gain, and I0 is
the constant offset current. ϕ represents the scene brightness,
as mentioned in [35], which can be assumed as HDR pixel
value. IS represents a SDR image pixel value and n is the
sensor noise. Unsaturation represents the pixels that can
be represented by the SDR image after camera imaging
pipeline processing; while saturation represents sensor sat-
uration occurs which is due to the limited capabilities of the
current camera, so this pixel value will equal to a saturation
point value Imax [35].

We consider both SDR and HDR in the linear (raw) do-
main in this work. From a definition perspective, a HDR file,
a post-ISP (Image Signal Processor) image/video, should
describe closely a natural scene. Using these files as input of
the camera imaging pipeline (Eq. (1)) thus conforms to the
actual scene approximately. Serving as an approximation
of the output from the camera imaging pipeline, similarly
considering the SDR image/video in the linear domain thus
makes sense. Also, our treatment is consistent with the
protocol of NTIRE 2021 Challenge [35]: Using the post-ISP
HDR images to approximate the scene brightness ϕ, and Eq.
(1) to generate SDR file (8 bits)

This formula, widely used in SDR imaging, inspires us
to generate HDR images in a similar theoretical manner.
Suppose we have a camera with infinite capture capabilities,
the corresponding saturated pixel value in Eq. (1) of the SDR
images can be represented as follows,

Imax = Ioverexposed − Ioverflow (2)

where Ioverexposed and Ioverflow represent the pixel values
captured by this infinitely capable camera, and the overflow
values between the ideal and real cameras, respectively. Of
course, if the pixel value is unsaturated, Ioverflow = 0 since
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no difference exists between the ideal and real cameras.
Combining Eq. (1) and Eq. (2), the SDR formation process
can be unified as,

IS =
t

g
ϕ+ I0 + n− Ioverflow. (3)

By reversing Eq. (3), the true HDR pixel value can be
obtained as follows,

ϕ =
g

t
(IS − I0 + Ioverflow )− g

t
n. (4)

Since the noise n also includes the impacts from g and t,
without generality, we still can consider gn/t as the SDR
image generation noise. From Eq. (4), we can conclude
the restoration process from SDR-to-HDR image reconstruc-
tion by three parts: 1) inferring the pixel values in the
overexposed area if Ioverflow ̸= 0; 2) adjusting sensor gain
and exposure time; 3) reducing the noise caused by SDR
image generation. In this way, we obtain an idealized HDR
imaging pipeline.

It is demonstrated in KUNet [1] that the formula can be
extended to HDR video reconstruction. Here, we will extend
the formula to compressed video reconstruction task. As the
first attempt at reconstructing compressed SDR videos to
HDR counterparts, in this work we seek for a simpler so-
lution based on single frame reconstruction, laying down a
solid ground for more sophisticated approaches. Generally,
quality enhancement for compressed frame can be denoted
as follows:

IS = E(ĬS) (5)

where ĬS represents the pixel values of the compressed
SDR frame. E is the quality enhancement function. In video
compression, the quantization process actively throws away
some high frequency information that is far from the mean
point, in order to save the bitrate [36]. In other words,
the processing of high and low frequency information is
not consistent. It is natural to think about the possibility
of decomposing the video into low-frequency and high-
frequency parts and then enhancing it with different func-
tions. The details can be described as follows:

IS = B[EL(ĬL), EH(ĬH)] (6)

where ĬL and ĬH represent the low-frequency and high-
frequency information of compress video. EL and EH are
the corresponding quality enhancement functions. B is a
blend function used to fuse the information of ĬL and ĬH .

In this work, we combine the above mentioned two
issues for CSDR-to-HDR video reconstruction. However, in
the image domain, the direct estimate of Ioverflow, g and t
is difficult. Thanks to the power of deep learning in feature
representation and learning, we perform the formulate and
estimate formula of the HDR video restoration process in
the feature domain and separation of high and low fre-
quency information in the feature domain to unify with
the previous task for compressed SDR video using neural
network. Each function is formulated by a sub-network
and together restores the HDR features for generating HDR
images. We present this knowledge-inspired module below.

4 PROPOSED METHOD

The proposed framework is shown in Fig. 2 (a). Com-
pared with KUNet [1], a new parallel structure is adopted.
The Knowledge-inspired Parallel Net (KPNet) consists of four
stages. Head stage extracts features from the input com-
pressed SDR video IL and transforms the obtained SDR
features into different scales; while tail stage reconstructs
a HDR video from the refined HDR features. Between the
head and tail stages, there is a knowledge-inspired block
(KIB) cluster. It consists of three KIBs which are used to
generate HDR features according to the Eq. (4) and Eq. (9).
After transforming the compressed SDR video into differ-
ent scales, a KIB cluster reconstructs three scales of HDR
features. Then, these features are fed into an information
fusion module (IFM) to generate detailed HDR features. We
describe the key modules in detail below.

4.1 Head and Tail

The main function of head stage is transforming the com-
pressed SDR video into feature space and scaling them into
different levels. It does not require overly complex opera-
tions. First, a simple subnetwork of one layer convolution
with a ReLU activation function is employed to complete
this task, which is denoted as

Fout = Conv3×3(ĬS) (7)

where Fout represents the output of head stage. To take
full advantage of the intra-frame information and reduce
the computational complexity, we use a three-branch scale
network to transform the output features at three different
scales. It can be denoted as the following,

F 1
S = Relu ◦ Conv3×3(Fout),

F 2
S = Relu ◦ Conv3×3 ◦Down(Fout),

F 3
S = Relu ◦ Conv3×3 ◦Down ◦Down(Fout),

(8)

where F 1
S ∈ RC×H×W , F 2

S ∈ RC×H/2×W/2, F 3
S ∈

RC×H/4×W/4 represent the SDR features at different scales
respectively. These features will be used to reconstruct HDR
features in parallel.

The tail stage is used for upsampling HDR features
and reconstructing HDR image. Besides, to refine the HDR
features obtained by the IFM, we use two convolution
operations before upsampling, which is described in detail
by the following equation,

ÎH = Conv3×3 ◦ UP ◦ Conv1×1 ◦ Conv3×3 ◦ReLU(Ffuse)

where Ffuse represents the feature generated by the IFM.
ÎH is the reconstructed HDR image.

4.2 Knowledge-inspired Block Cluster

As stated in Sec. 3, Eq. (4) can be used to reconstruct HDR
videos at the image intensity perspective. However, it is
hard to directly formulate and combine this function in
the image intensity domain. Therefore we turn all these
processes to feature space and take advantage of the rep-
resentation ability of deep learning. We let E(·) represent
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Fig. 2: Overview of the proposed KPNet. (a) The Knowledge-inspired Block (KIB) cluster is designed to generate HDR
features with the Head for feature extraction, the Information fusion module (IFM) for feature refining, and the Tail for
HDR image reconstruction blocks. (b) A KIB is composed of three parts: imaging parameter adjusting (X), imaging noise
reduction (Y ) and compressed image quality enhancement with missing overexposed features recovering (R). (c) The
Residual with a Coordinate Attention (RCA) [37] module for filtering the fused HDR features.

an enhancement function of compressed SDR pixels. Conse-
quently, the formula can be characterized in feature space as
below,

ϕ︸︷︷︸ =
g

t︸︷︷︸ (E(ĬS)− I0 + Ioverflow)︸ ︷︷ ︸−g

t
n︸ ︷︷ ︸,

HF = X(LF ) ⊙ R(LF ) + Y (LF ) (9)

where ⊙ denotes the element-wise multiplication. LF and
HF represent the input compressed SDR features and the
features to reconstruct the output HDR image, respectively.
R(·) corresponds to the part of formula for the task of
enhancing compressed SDR feature quality and inferring
the missing overexposed feature to reconstruction HDR.
X(·) is in charge of modulating the compensated feature
R(LF ) to HDR feature domain; Y (·) corresponds to the SDR
imaging noise reduction part in Eq. (9). With the help of this
expression in feature space, our knowledge-inspired block
is developed as shown in Fig. 2 (b), consisting of three parts
of networks which are fit to the functions R(·), X(·) and
Y (·), respectively.

Note, X(LF ) and Y (LF ) can be used to approximate
g
t and g

tn respectively without direct access to the camera
configuration parameters. This is because SDR images are
obtained from the HDR image conditioned on the camera
configuration parameters (i.e., the camera parameters are
implicitly embedded with SDR images). This implicit cam-
era parameters have been also analyzed in previous works.
For example, the inverse camera response function, related

to the camera parameter configuration, can be obtained from
SDR images [30].

For the network fitting the function R(·) (Fig. 2), two
sub-modules are proposed to obtain the compensated fea-
tures. For the compression enhancement task, guided by
Eq. (6), we propose a new Asymmetric Frequency domain
information Enhancement (AFE) module denoted as

(LFh
, LFl

) = SF (LF ), (10)

L̂F = EH(LFh
) + Upsample(EL(LFl

)) + LF , (11)

where SF represents a split function with two parts: a
convolution layer and an average pool layer with a con-
volution layer. It can be used to separate high and low
frequency information as shown in the OctConv [38]. Dis-
crete Wavelet Transform (DWT) can accurately decompose
the frequency domain information, it is not adopted here
due to its computational cost and the confidence on fitting
ability of neural networks. EH(·)/EL(·) represent high/low
frequency information enhancement function. They all con-
sist of two layers of convolution and ReLU activation func-
tion (Conv3×3 ◦ ReLU ). Then, the enhanced low frequency
information is fused with the high frequency information
through an upsampling operation. LF is also incorporated
into the enhanced features to ensure that the information
is not corrupted. L̂F represents the output feature of AFE
module, which is fed to the refinement network for com-
pensating the missing overexposed features to reconstruct
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HDR image. It can be expressed as

R = Conv3×3 ◦ReLU ◦ Conv1×1 ◦ReLU(L̂F ), (12)

where R represents the output of R module. Normalization
is not applied in the process of learning high frequency,
low frequency and original features, as it would hurt the
reconstruction quality (see Tab. 4).

To realize X and Y , we use two 1 × 1 convolution layers
to simulate these functions:

X = Conv1×1 ◦ Conv1×1(LF ), (13)
Y = Conv1×1 ◦ Conv1×1(LF ). (14)

All KIBs from different scales are used to generate richer
HDR feature maps, i.e., forming a KIB cluster.

Remark. Compared with the previous methods, our
KIB mimics the HDR imaging formula. The solution space
is constrained and the many-to-many compressed-SDR to
HDR mapping problem is well tackled. Under the adjust-
ments of X and Y modules, the function of generating HDR
features is adaptive to different SDR videos. Compared to
the cascading design of KUNet [1] with the risk of accu-
mulating errors, our KPNet exploits a parallel structure to
mitigate ghosting artifacts with generated images (please
see Sec. 5.3.4).

4.3 Information Fusion Module
Converging the learning of different scales of HDR features
is critical. A straightforward method is feature weighing:

Ffuse = α1F
1
R + α2F

2
R + α3F

3
R (15)

where F 1
R, F

2
R and F 3

R represent the features generated
by the corresponding KIB clusters, with the corresponding
weights as α1, α2, and α3. Due to different natures (e.g.,
different scales), the weights should be not necessarily the
same. Critically, this design does not make full use of
different scales of features.

To address this issue. we propose a simple and effi-
cient information fusion block. Specifically, taking the coarse
HDR features as input, we first pair these features to allow
the HDR elements with different proportions to interact
with each other. Then, the fused HDR features are further
weighted to obtain the final features with rich color and
detail information. This process is described as

Ffuse = T1[Cat(F 1
R, F

2
R)] + T2[Cat(F 1

R, F
3
R)

+T3[Cat(F 2
R, F

3
R)], (16)

where Ti (i = 1, 2, 3) represents the feature fusion function.
It performs two tasks: one is feature fusion, and the other is
adaptively weighting different fusion features. The first task
is done by a residual network. The second task is realized
by the attention mechanism with a strong focus on spatial
information as well as positional information also exploited.
Formally, this process is denoted as

Ti = RCA(Conv1×1(Di)) (17)

where Di (i = 1, 2, 3) represents the feature after the
operation Cat(·). RCA represents residual with an atten-
tion mechanism, for which we adopt Coordinate Attention
(CA) [37] (see Fig. 2 (c)). Given an input X , each channel

is encoded in horizontal and vertical coordinates using two
pooling kernels (H, 1) or (1,W ) as:

zhc (h) =
1
W

∑
0≤i<W xc(h, i), (18)

zwc (w) =
1
H

∑
0≤j<H xc(j, w), (19)

where zc is the output associated with the c-th channel. h,w
represent the vertical and horizontal directions respectively.
This operation can effectively capture long-range correla-
tion along one spatial direction, and keep accurate position
information along another spatial direction [37]. Next, two
attention maps gh and gw are generated as follows,

f = δ
(
Conv1×1

(
Cat(zh, zw)

))
, (20)

fh, fw = split(f), (21)

gh = σ
(
Conv1×1

(
fh

))
, (22)

gw = σ (Conv1×1 (f
w)) , (23)

where δ is a non-linear activation function. Then, f is
divided into two vectors fh ∈ RC/r×H and fw ∈ RC/r×W

along the spatial dimension. r is used to reduce the channel
number of f . After that, two 1× 1 convolutions are used to
convert fh and fw to the same dimension. σ is the sigmoid
function. Finally, the output y from CA can be written as

yc(i, j) = xc(i, j)× ghc (i)× gwc (j). (24)

This module takes advantage of the HDR features gen-
erated by the KIB clusters, leading to HDR image generated
with significantly less ghosting artifacts. Specifically, IFM
introduces pairwise feature interaction across scales, going
beyond simple weighting. This design allows our knowl-
edge inspired multi-scale features to encode added details in
the target features, whilst reducing the inference difficulty.

Remark. Our information fusion module is simple and
effective. With a skillful design, a simple interaction mod-
ule is adopted to ensure the direct and close interactions
between KIBs. The module is an amplification of the advan-
tages of parallel construction, ensuring that our KPNet fur-
ther reduces ghosting artifacts. This effect has been verified
in our experiments (Tab. 2).

4.4 Loss Function
For simplicity and generality, we adopt the L1 loss function
for model training:

Loss(IH , ÎH) = ∥IH − ÎH∥1 (25)

where IH represents the real HDR image. Compared with
our preliminary work KUNet [1], this loss function is rather
simpler without any hyper-parameter.

5 EXPERIMENT

5.1 Experiment Setup
Dataset. As compressed-SDR to HDR (CSDR-to-HDR) video
reconstruction is a new problem, there is no existing bench-
mark available. To enable model evaluation, we construct a
test dataset from HDRTV [11]. This dataset is constructed
by 22 HDR10 standard videos complying with the Rec. 2020
standard. It has 1235 paired training frames and 117 test
frames. It contains information about moving light sources,
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TABLE 1: Comparison with the state-of-the-art methods. QP: Quantization Parameter. *: Joint training applied. The
red/blue/green indicate first/second/third best result.

QP Category Model Venue Params PSNR↑ SSIM↑ MSE↓ ∆EITP ↓ HDR-VDP3↑
CSRNet [39] ECCV20 36K 34.3815 0.9682 0.00050 12.7086 7.1291

Pixel2Pixel [40] CVPR17 11.38M 30.9305 0.9595 0.00197 19.4141 7.5197
DNCNN [31] TIP17 559K 33.8340 0.9670 0.00062 14.4560 7.8556Image Translation

DPIR [41] TPAMI22 32.64M 34.9800 0.9720 0.00043 10.6693 7.9842
JSI-GAN [27]↓ AAAI20 1.06M 34.7672 0.9635 0.00056 13.6780 -
HDRTV [11] ICCV21 1.41M 34.3060 0.9713 0.00517 12.3924 8.0818SDR-to-HDR
KUNet [1] IJCAI22 1.12M 34.8270 0.9713 0.00046 11.0500 7.8574

DNCNN [31]+HDRTV [11] - 2.00M 34.7056 0.9676 0.00047 12.1986 8.0526
DNCNN [31]+KUNet [1] - 1.68M 34.5778 0.9687 0.00048 11.8109 7.9765Cascading
DNCNN [31]+KUNet [1]* - 1.68M 34.9668 0.9713 0.00045 11.3471 7.8999

32

CSDR-to-HDR KPNet Ours 1.55M 35.5253 0.9724 0.00038 10.7900 8.0960
CSRNet [39] ECCV20 36K 33.3495 0.9567 0.00060 14.1212 7.5784

Pixel2Pixel [40] CVPR17 11.38M 30.5000 0.9724 0.00121 19.8403 7.3802
DNCNN [31] TIP17 559K 32.5919 0.9554 0.00739 15.5816 7.4464Image Translation

DPIR [41] TPAMI22 32.64M 34.0380 0.9610 0.00051 11.9210 7.5593
JSI-GAN [27]↓ AAAI20 1.06M 33.6724 0.9635 0.00056 13.6780 -
HDRTV [11] ICCV21 1.41M 33.3980 0.9603 0.00058 13.6280 7.6575SDR-to-HDR
KUNet [1] IJCAI22 1.12M 33.5860 0.9601 0.00057 12.6073 7.4081

DNCNN [31]+HDRTV [11] - 2.00M 33.6102 0.9563 0.00058 13.6091 7.6208
DNCNN [31]+KUNet [1] - 1.68M 33.3744 0.9571 0.00060 13.3998 7.5447Cascading
DNCNN [31]+KUNet [1]* - 1.68M 33.6512 0.9599 0.00057 12.8425 7.5108

37

CSDR-to-HDR KPNet Ours 1.55M 34.1907 0.9608 0.00050 12.4292 7.6379
CSRNet [39] ECCV20 36K 31.9878 0.9381 0.00081 16.2704 6.9567

Pixel2Pixel [40] CVPR17 11.38M 27.9251 0.9102 0.00384 25.7382 6.5744
DNCNN [31] TIP17 559K 31.4434 0.9372 0.00091 17.3354 6.7819Image Translation

DPIR [41] TPAMI22 32.64M 32.3987 0.9427 0.00071 14.1976 6.9014
JSI-GAN [27]↓ AAAI20 1.06M 32.2527 0.9445 0.00074 15.6759 -
HDRTV [11] ICCV21 1.41M 32.1151 0.9424 0.00080 15.5980 6.9329SDR-to-HDR
KUNet [1] IJCAI22 1.12M 32.1384 0.9418 0.00076 14.8065 6.8324

DNCNN [31]+HDRTV [11] - 2.00M 32.1693 0.9383 0.00077 15.5662 6.9717
DNCNN [31]+KUNet [1] - 1.68M 31.7923 0.9383 0.00084 15.6402 6.9023Cascading
DNCNN [31]+KUNet [1]* - 1.68M 32.0765 0.9414 0.00081 15.2456 6.8924

42

CSDR-to-HDR KPNet Ours 1.55M 32.6943 0.9421 0.00071 14.5567 6.9209
CSRNet [39] ECCV20 36K 30.2894 0.9127 0.00117 19.3696 6.1670

Pixel2Pixel [40] CVPR17 11.38M 24.6152 0.8548 0.01081 37.4932 5.7147
DNCNN [31] TIP17 559K 29.8220 0.9123 0.00129 20.7242 6.0758Image Translation

DPIR [41] TPAMI22 32.64M 30.7398 0.9185 0.00104 17.2544 6.1113
JSI-GAN [27]↓ AAAI20 1.06M 30.7269 0.9173 0.00102 18.5330 -
HDRTV [11] ICCV21 1.41M 29.4684 0.9159 0.00161 21.6288 6.0346SDR-to-HDR
KUNet [1] IJCAI22 1.12M 30.5031 0.9174 0.00112 17.8971 6.0753

DNCNN [31]+HDRTV [11] - 2.00M 30.4798 0.9125 0.00112 18.7283 6.1689
DNCNN [31]+KUNet [1] - 1.68M 30.1021 0.9125 0.00121 19.0349 6.1259Cascading
DNCNN [31]+KUNet [1]* - 1.68M 30.5722 0.9171 0.00108 18.1048 6.0338

47

CSDR-to-HDR KPNet Ours 1.55M 30.9391 0.9182 0.00102 17.6343 6.0975

rich colors, highlights and bright. We compress all the
images by HM16.91 under the intra-coding configuration,
setting the Quantization Parameters (QPs) to 32, 37, 42, 47,
respectively. These QPs can reflect the dramatically varying
quality of compressed videos. As the very first exploration,
we leave the investigation of inter-frame information based
video decoders for future work.

Evaluation metrics. We employ five evaluation met-
rics for comprehensive comparisons, including peak signal-
to-noise ratio (PSNR), structural similarity index measure
(SSIM) [42], Mean squared error (MSE), ∆EITP [43], HDR-
VDP3 [44]. PSNR, SSIM and MSE are commonly used to
measure image similarity. An important task with CSDR-to-
HDR video reconstruction is the recovery of the color gamut
(Rec. 709->Rec. 2020), we thus adopt color difference metric
∆EITP . Following [11], we choose HDR-VDP3, a visual
metric for predicting visibility (discrimination) and quality
(mean-opinion-score) [44].

Implementation details. For the Head, Tail, R block of

1. https://hevc.hhi.fraunhofer.de/

KIB and IFM, we use 3 × 3 convolution with a step size of
1 unless specifically stated. For the X and Y branches in
the KIB, we use 1 × 1 convolution. The activation function
of all networks is ReLU function. Except for input and
output layers, the channels of feature maps are all set to
64. The down-sampling operation uses a 3 × 3 convolution
operation with a step size of 2. Up-sampling operation uses
PixelShuffle [45]. We use ADAM optimizer [46] with the
learning rate of 2e−4 decayed by a factor of 2 after 20K
iterations and then decayed by a factor of 2 after every 10K .
The total number of iterations is 550000. The batch size is
12. All models are built on the PyTorch framework

5.2 Comparison with State-of-the-art Methods
Due to no existing works, we conduct extensive evaluation
by comparing three different approaches: (1) existing image
translation methods (e.g., Pixel2Pixel [40], DNCNN [31],
DPIR [41], CSRNet [39]); (2) SDR-to-HDR image/video
reconstruction methods (e.g., JSI-GAN [27], HDRTV [11],
KUNet [1]); and (3) cascading compressed SDR video en-
hancement (e.g., DNCNN [31] and DPIR [41]) with HDR
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Fig. 3: Qualitative comparisons. We highlight the key differences with bounding boxes and arrows. GT: The real HDR
sample.

reconstruction (e.g., HDRTV [11], KUNet [1]) with and
without joint training. For fair comparison, we follow the
original optimal configuration of prior methods during their
training. Note, as JSI-GAN is originally designed for super-
resolution, we additionally apply a down-sampling oper-
ation to ensure the integrity, while keeping the input and
output sizes consistent.

5.2.1 Quantitative Evaluation
We present the comparison with prior art methods in Tab. 1.
We draw several key observations: (1) Our KPNet achieves
the best performance for CSDR-to-HDR video reconstruc-
tion across different QP settings, validating the superior-
ity of our design and formulation over all the alterna-
tive approaches. (2) The best image translation method,
DNCNN [31], is less satisfactory, because it only addresses
compressed SDR enhancement and does not take HDR im-
age reconstruction into account. (3) Despite giving competi-
tive results, DPIR [41] is significantly more heavy and more
expensive. (4) Compared with SDR-to-HDR image/video
reconstruction methods, our preliminary model KUNet [1]
already performs well. After incorporating the priori knowl-
edge of compressed video, our KPNet can further improve
the performance. (5) HDRTV [11] is less competitive than
ours due to ignoring information loss of compressed SDR
videos. (6) The cascading approach is effective in improving
the constituent models but the gain is limited. In particular,
the combination of DNCNN+KUNet even performs worse

than KUNet alone. A plausible cause is error accumulation
– error information from quality enhancement may interfere
with HDR video reconstruction. Further, cascading leads to
more complex pipelines in both training and design.

5.2.2 Qualitative Evaluation

We provide qualitative comparisons in Fig. 3. For diverse
evaluation, three different scenes are selected: (a) low in-
formation density, (b) salient object with overexposed ob-
servation, (c) a wealth of color information with complex
patterns. The real HDR image is denoted as GT (ground-
truth). We summarize the following observations: (1) For
the first scene, within the white area adjacent to the logo
“LG”, CSRNet [39], Pixel2Pixel [40], DNCNN [31], and
JSIGAN [27] all cannot recover the compression ghosting
artifacts accurately. As indicated by red arrows, DNCNN
yields two colors (red and white) alien to the original scene.
HDRTV [11] instead suffers color breaks. Whilst no color
breakage, KUNet [1] and DPIR [41] both present compres-
sion ghosting artifacts in the white area. (2) For the second
scene, KPNet performs well in recovering the sky colors
(see purple boxes) and the color breaks near sunlight. It
is evident that DNCNN is inferior in coloring. (3) For the
last scene, we similarly observe the inferior ability of prior
models in dealing with the fine-grained details of the nature,
e.g., bright regions. Overall, our method performs the best
across all scenarios, matching the real scene closely.
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TABLE 2: Ablation study. ’!−’: Only one KIB is used for HDR image reconstruction with about 512K parameters, a
lightweight variant. The red/blue indicate the first/second best result.

Index KIB Information fusion design Loss PSNR↑ SSIM↑ ∆EITP ↓ MSE↓
R(·) X(·) Y (·) IFMD IFMN IFMours L1 L2 LKIB

1 ! ! ! - - - ! - - 35.0584 0.97117 10.9900 0.00042
2 ! ! ! - - ! ! - - 35.5253 0.97242 10.7900 0.00038
3 ! ! ! - - ! - ! - 35.2212 0.97110 11.3522 0.00041
4 ! ! ! - - ! - - ! 35.5293 0.97224 10.8489 0.00040
5 !− !− !− - - - ! - - 34.8204 0.97088 11.0500 0.00046
6 ! - - - - - ! - - 34.8852 0.97059 11.1434 0.00044
7 ! ! - - - - ! - - 34.9780 0.97076 11.1495 0.00044
8 ! ! - - - ! ! - - 35.4696 0.97187 10.9964 0.00041
9 ! - ! - - ! ! - - 35.3151 0.97201 10.9685 0.00039
10 ! ! ! ! - - ! - - 35.0091 0.97178 11.0780 0.00042
11 ! ! ! - ! - ! - - 33.2560 0.96742 13.2365 0.00069

5.3 Ablation Study

5.3.1 Effect of key modules

We evaluate the effect of each key module (e.g., KIB, infor-
mation fusion module (IFM), and loss) with our KPNet. We
use the QP = 32 setting. We make the following observations
from Tab. 2. (1) Row 1 vs. 2: With L1 loss, our IFM can clearly
improve the performance.

We further compare with two alternative loss functions,
L2 and LKIB , with the latter meaning the total loss function
has a supervision training term on KIB: Loss(IH , ÎH) =
∥IH − ÎH∥1+γ∥IH −Ki∥1, where {Ki|i = 1, 2, 3} represent
the HDR images reconstructed from the features generated
by the corresponding KIBs respectively, and γ is a balance
term. (2) From Row 2 vs. 3 vs. 4, it can be seen that using L1

loss can obtain satisfactory results. LKIB gives a slight gain
on PNSR but hurts the others; Also, reconstructed images
are often less accurate and the γ needs to set small to avoid
over-penalty. We thus simply uses L1 loss.

Next we analyze the effect on the number of KIB. To
that end, we construct a lightweight variant – only one
KIB is used for HDR image reconstruction with about 512K
parameters. (3) From Row 1 vs. 5, we see clear performance
degradation, suggesting the importance of having a stronger
model. Note that our lightweight model achieves similar
result as HDRTV but using less than a half of parameters.
We find using three KIBs strikes a good trade-off between
efficiency and accuracy.

We examine the design of KIB, including the core mod-
ule R, and the adaptive X and Y branches for further
HDR feature refinement. (4) From Row 6, we show that
only using the R module can already achieve an acceptable
result. Adding the X and Y branches leads to stronger
expressive ability. As suggested in Eq. (9) that X and Y
branches should be used simultaneously, which has been
verified in the contrast of Row 6/7 vs. 1 and 8/9 vs. 2. Our X
only variant achieves a good performance gain, regardless
of using IFM or not. Note, without IFM, KPNet degrades to
KUNet.

We examine the design of information fusion. We fur-
ther compare our IFM with two more variants: (i) IFMD -
directly weighing the features with Eq. (15), with the best
setting we empirically find as α1 = 0.3, α2 = 0.4 and
α3 = 0.3; (ii) IFMN - fusion without pairwise interaction
as Ffuse = T1

[
F 1
R

]
+ T2

[
F 2
R

]
+ T3

[
F 3
R

]
. (5) From Row

TABLE 3: Evaluation of information loss during modeling.

Iterations K̆1 K̆2 K̆3

500 0.000905 0.003068 0.001962
5000 0.000091 0.000252 0.000419
10000 0.000020 0.000050 0.000133

Fig. 4: Visual evaluation of different information fusion
strategies. GT: The real HDR sample.

10/11 vs. 2, it is evident that our design is the best. This
is because both variants fail to explore the mutual relation-
ships between different features. As a result, inferior results
could be generated, e.g., IFMD gives a plenty of ghosting
artifacts (see blue boxes in Fig. 4), whilst IFMN is poor in
color recovery (see orange boxes in Fig. 4).

We finally evaluate the information loss (e.g., physical
meaning loss of input) during modeling. Specifically, we
reconstruct the CSDR input from the three scaled CSDR
features (after nonlinear mapping): K̆1 = Conv3×3(F

1
S),

K̆2 = Conv3×3 ◦ Up(F 2
S), K̆3 = Conv3×3 ◦ Up ◦ Up(F 3

S),
where {K̆i|i = 1, 2, 3} represent the CSDR frames recon-
structed from the CSDR features F 1

S , F 2
S , F 3

S , respectively.
We use the L1 reconstruction loss for training: L(ĬS) =
∥K̆i − ĬS∥1. For reconstruction quality, we measure the
mean square errors (MSE) between the reconstructed CSDR
frames and the original ones. We observe from Tab. 3 that
very small reconstruction errors can be achieved, decreasing
rapidly along with the training iterations. This validates
little information loss from our modeling.

5.3.2 Feature normalization
As mentioned in Sec. 4.2, feature normalization is not ap-
plied. Tab. 4 shows that the performance of KPNet drops to
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TABLE 4: Effect of feature normalization with our KPNet.
QP: Quantization Parameter.

Normalization PSNR↑ SSIM↑ MSE↓ ∆EITP ↓
✓ 35.2725 0.9701 0.00040 11.0262QP32
✗ 35.5253 0.9724 0.00038 10.7900
✓ 33.9337 0.9584 0.00053 12.7788QP37
✗ 34.1907 0.9608 0.00050 12.4293
✓ 32.5473 0.9409 0.00070 14.6997QP42
✗ 32.6943 0.9421 0.00071 14.5567
✓ 30.7764 0.9180 0.00103 17.9768QP47
✗ 30.9391 0.9182 0.00102 17.6343

TABLE 5: Ablation on the feature scales..

Methods PSNR ↑ SSIM ↑ MSE ↓ ∆EITP ↓
B1 35.3915 0.9718 0.00040 10.9694
B2 35.5108 0.9718 0.00040 10.8633
B3 35.5253 0.9724 0.00038 10.7900

some extent from normalization. We consider feature nor-
malization might alter the brightness distribution of video
frames, leading to brightness distortion and finally hurting
the accuracy of HDR video reconstruction.

5.3.3 Downsampling
As discussed in Sec. 4.1, the output feature Fout is trans-
formed to three different scales / branches. We evaluate the
choice of this design selection. We compare three designs:
B1, B2 and B3 representing one branch without down-
sampling, two branches with single downsampling and
three branches with two downsampling, respectively. Tab. 5
shows that the best results are obtained with three branches.
The same is visually validated in Fig. 5. Specifically, we
observe significant color difference between B1 and B2 (see
Group A); The block effect is not eliminated on the “HDR”.
Group B shows that B1 and B2 present noticeable bound-
aries in color transition regions, especially in the contrast
between B1 and B3. The trend suggests further adding more
branches would be marginally beneficial with lower cost-
effectiveness.

5.3.4 KPNet vs. KUNet
Our preliminary model KUNet [1] tends to present color
breakdowns and ghosting artifacts in CSDR-to-HDR video
reconstruction. This is the motivation for design the KPNet.
With careful investigation and experimental analysis, we
realize that the ghosting artifacts are caused by two fac-
tors: image compression and the cascaded design of KIBs
(propagating and amplifying the error information). For
empirical validation, we design a test with hand-designed
color cards for easy visual examination. We compare KPNet
with DPIR [41], KUNet, and two more variants: (i) Single -
an improved KIB with a new R module combining the prior
knowledge of compressed video reconstruction as KPNet;
(ii) KUNet-New - the KUNet architecture with the improved
KIB.

We observe from Fig. 6 that, (1) KUNet-New can reduce
the occurrence of ghost compared with KUNet. Due to the
use of cascaded KIBs, it still accumulates the errors and
gives consequently color breakdown. In contrast, the model
Single does not. This suggests the limitation of the cascade
structure. (2) With a a parallel structure, KPNet solves the

Fig. 5: Visual examples using different feature scales. GT:
The real HDR sample.

Fig. 6: Analysis on color breakdowns and ghosting artifacts.
QP: Quantization Parameter.

above issue. (3) DPIR cannot excel in visual analysis though
it yields a competitive quantitative result (Tab. 1). Also, it
suffers from color discontinuity due ot using the UNet.

5.4 Preliminary video evaluation
We further conduct video based visualization evaluation.
This test focuses on both the reconstruction quality of indi-
vidual video frames and the coherence through the frames
over time. Considering that the dataset available for HDR
video reconstruction is relatively limited and HDRTV is a
single frame based dataset, we sample a random Internet
video2 with typical natural illumination conditions like the
sun and water surface reflections. This video comprises 600
frames at a resolution of 3840*2160. The first five frames are
used for presentation. For comparative evaluation, we select
a compressed image enhancement method (DNCNN [31] )
and a HDR reconstruction method (KUNet [1]).

We make several observations from Fig. 7: (1) It is evi-
dent that DNCNN can not cause any ghosting in the vicinity
of the sun, but the sun has no any edges and the colour turns
red. (2) Although KUNet [1] can preserve the sun’s shape,
ghosting appears across the first, fourth and fifth frames,
resulting in discontinuous observation over time. This is
because KUNet only solves the problem of HDR image

2. https://youtu.be/mxdyKT8WEZM?si=HExWQaMxRGnzk9yp
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Fig. 7: Visualization on HDR video reconstruction.

reconstruction but not the compressed video reconstruction.
(3) Our KUNet not only preserves the silhouette of the
sun but also eliminates ghosting artifacts, yielding the best
continuity of video playback and enhancing the viewing
experience significantly. This is achieved by leveraging the
knowledge inspired block to incorporate a priori knowledge
of compressed video in a parallel structure without error
accumulation across operations.

6 CONCLUSION

In this paper, we have studied the largely ignored problem
of CSDR-to-HDR video reconstruction. By analyzing the
HDR-to-SDR imaging process and obtaining the HDR im-
age formulation formula, we formulate a novel model KP-
Net, characterized by incorporating the knowledge of com-
pressed video reconstruction into the knowledge-inspired
block in an interactive parallel structure. For enabling model
evaluation, the very first benchmark has been constructed.
Experiments demonstrate that our KPNet achieves the state-
of-the-art performance for CSDR-to-HDR video reconstruc-
tion, along with detailed ablation study and analysis.

The research on compressed-SDR to HDR (CSDR-to-
HDR) video reconstruction task is still in its nascent stage,
leaving ample scope for advancements in both theoretical
frameworks and methodological approaches. For example,
leveraging inter-frame information to reduce ghosting ar-
tifacts caused by video compression is a promising area.
Except the traditional frame or feature alignment based
approaches, highly exploratory routes include to use mul-
tiple compressed SDR frames as the input conditions and to
explore the potential of recent diffusion models.
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