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ABSTRACT
Following the conventional hybrid video coding framework, ex-
isting learned video compression methods rely on the decoded
previous frame as the reference for motion estimation considering
that it is available to the decoder. Diving into its essential advan-
tage of strong representation capability with CNNs, however, we
find this strategy is suboptimal due to two reasons: (1) Motion
estimation based on the decoded (often distorted) frame would
damage both the spatial structure of motion information inferred
and the corresponding residual for each frame, making it difficult
to be spatially encoded on the whole image basis using CNNs; (2)
Typically, it would break the consistent nature across frames since
the estimated motion information is no longer consistent with the
movement in the original video due to the distortion in the decoded
video, lowering the overall temporal coding efficiency. To overcome
these problems, a novel asymmetric Structure-Preserving Motion
Estimation (SPME) method is proposed, with the aim to fully ex-
plore the ignored original previous frame at the encoder side while
complying with the decoded previous frame at the decoder side.
Concretely, SPME estimates superior spatially structure-preserving
and temporally consistent motion field by aggregating the motion
prediction of both the original and the decoded reference frames
w.r.t the current frame. Critically, our method can be universally
applied to the existing feature prediction based video compression
methods. Extensive experiments on several standard test datasets
show that our SPME can significantly enhance the state-of-the-art
methods.
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1 INTRODUCTION
The transmission of video data is one of the important reasons
leading to Internet congestion. Therefore, efficient compression
schemes have always been a high demand to reduce transmission
and storage costs. In the past decades, researchers have successively
developed a few video coding standards, including H.264/AVC [45],
H.265/HEVC [36] and H.266/VVC [9]. These schemes use manu-
ally designed modules to reduce spatio-temporal redundancy and
achieve good performance, but these modules can not be optimized
in an end-to-end manner based on large-scale video data.

At present, deep neural network has been applied to video com-
pression schemes. Resembling the conventional hybrid video cod-
ing framework, these schemes replaced the traditional modules,
such as motion estimation, motion compensation, information com-
pression, etc., with deep neural networks to achieve an end-to-
end optimization. From the perspective of encoding space, they
can be roughly divided into three categories: 3D encoder based
methods [18, 27], frame prediction based methods [1, 5, 11, 14–
17, 21, 25, 26, 28, 34, 46, 48] and feature prediction based meth-
ods [19, 23, 35]. Although the first two categories achieve great
success, the performance and flexibility are limited. Recently, the
route of the last category attracts attentions. As for feature pre-
diction, it is mainly applied to the prediction-then-residual and
conditional coding approaches. The first one is to compress the
residual between the predicted current frame feature and the origi-
nal current frame feature [19]; another one regards the predicted
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Figure 1: Visual quality of different frames. (a) is the current
frame to be encoded. (b) is the decoded previous frame at de-
coder side. (c) is the reconstructed current frame using only
the decoded previous frame as reference. (d) is the original
previous frame at encoder side, which has richer informa-
tion than (b). (e) is the reconstructed current frame using
our method, where both the decoded and original previous
frames are references. Zoom in for best view.

feature as context, which will be used to guide the contextual coding
and entropy parameters learning [23].

The above schemes based on feature prediction use the previous
decoded frame as the reference frame since it is available at the de-
coder side. This is expected for the conventional block based video
coding, because the residual of each block after motion estimation
is independently coded without considering its structure and its
effect on the neighboring blocks, and the motion estimation based
on the decoded frame provides the smallest residual for each block.
Although it seems natural to be extended to the learned video com-
pression, we find that this strategy is actually suboptimal by diving
into the difference between the conventional block based video
coding and the learned video compression, especially its essential
advantage of strong representation capability within CNNs. Con-
cretely, for learned video compression, the motion information and
the residual are coded for the whole frame, and the reason it brings
better coding performance is the strong representation capability
within CNNs. By using the previous decoded frame with inferior
quality, the estimated motion field deviates from the real movement
of the video, thus damaging the spatial structure of the motion
information and the corresponding residual. Moreover, due to the
quantization in the learned video coding and the processing of deep
CNNs, the distortion in the decoded frame is of random nature. The
estimated motion information based on the distorted frames also
shows certain randomness around the real motion across frames,
breaking the temporally consistent nature of a video, which further
makes the exploration of temporal information difficult and lowers
the temporal coding efficiency. It is also worth mentioning that such
deviated motion information may further aggregate the temporal
error propagation since the distortion changes the characteristics
of the decoded frames. All in all, the motion estimation completely
based on the decoded frame damages the spatial structure and the
temporal coherency, which in turn lowers the coding performance.

As shown in Fig 1, due to the lossy nature of video codec, some in-
formation has been lost in the previous decoded frame (b) compared

with the original previous frame (d), and thus leads to inaccuratemo-
tion information from the real motion in the video. Fortunately, the
motion estimation process is operated at the encoder side. Therefore,
motion estimation based on the original previous frame is feasible,
and expected to achieve accurate motion information. However,
the following motion compensation is still based on the previous
decoded frame, affecting the corresponding residual. Therefore, the
decoded reference frame still needs to be considered in the motion
estimation process to enhance the overall prediction efficiency.

Based on the above analysis, we propose a plug-and-play motion
estimation method, named as SPME (Structure-Preserving Motion
Estimation), to explore both the original and decoded reference
frame information for estimating spatially structure-preserving
and temporally consistent motion field. First a Structure-Preserving
Motion estimation Network (SPM-Net) is proposed to get a highly-
fitting motion field from the perspective of accurate motion and
efficient prediction. It extracts the main and auxiliary motion fields
between the decoded and original previous frame features w.r.t the
current frame feature respectively. Then a fusion module is pro-
posed to fuse these two motion fields and form the final structure-
preserving motion field to be transmitted. Further, a Motion Com-
pensation and Prediction Enhancement Network (MCPE-Net) is
proposed to predict the current frame feature. In this network,
the predicted current frame feature is also enhanced by extracting
and mining the useful information in the decoded previous frame
feature.

Our contributions can be summarized as follows: (1) We identify
a generic limitation of the motion estimation in the feature predic-
tion based video compression methods. To address this, we propose
a plug-and-play module, called SPME. Specifically, we propose to
use the original previous frame as auxiliary data to enhance the
motion estimation between the current frame and the decoded pre-
vious frame to form a structure-preserving motion field. In this way,
the spatial and temporal compression performance are improved,
and the phenomenon of error propagation is restrained to some
extent. (2) In order to further enhance the quality of the predicted
current frame feature, an motion compensation and prediction
enhancement module is developed to extract and mine useful infor-
mation from the decoded previous frame. (3) On the standard test
datasets, the proposed method achieves a gain of 9.99% and 3.59%
in terms of bit-rate saving on top of the state-of-the-art methods
FVC [19] and DCVC [23], respectively, validating that our method
can be widely used as a plug-in unit.

2 RELATEDWORKS
Image compression. The past decades have witnessed the vig-
orous development of image compression industry, a series of im-
age compression standards such as JPEG [42], JPEG2000 [38] and
BPG [7] were proposed to reduce spatial redundancy as much as
possible through hand-made modules. And great compression per-
formance and operation stability were achieved.

After the rise of deep learning, deep learning based image com-
pression has attracted attentions. Several methods based on recur-
rent neural networks (RNNs) proposed earlier [20, 40, 41] gradually
encode the residual information in the previous step to compress
the image. Recent methods [2, 3, 10, 22, 39] use variational auto-
encoder (VAE) based on convolutional neural networks (CNNs).
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Figure 2: The framework of our proposed SPME based upon the baseline FVC [19] (without multi-frame feature fusion module).
For a frame 𝑋𝑡 and its references 𝑋𝑡−1, 𝑋𝑡−1, the Feature Extraction module extracts their features named 𝐹𝑡 , 𝐹𝑡−1 and 𝐹𝑡−1
respectively. Then the structure-preserving motion field 𝜃𝑡 is calculated by the Structure-Preserving Motion estimation Network
(SPM-Net). The Motion Compensation and Prediction Enhancement Network (MCPE-Net) is proposed to predict the current
frame feature and enhance it. The motion field 𝜃𝑡 and the feature residual 𝑅𝑡 are compressed and transmitted. The number
besides the solid line represents the number of channels.

Specifically, pixels are mapped to latent feature space for encoding
and decoding. A hyper prior entropy model was proposed firstly
to capture the distribution of latent features using additional bits
in [4] for better compression performance. Some follow-up meth-
ods [24, 30, 32] integrate context factors to further reduce the spatial
redundancy in the latent features by serial operation. These meth-
ods have achieved inspiring effect compared with the traditional
codecs.
Video compression. In order to remove spatio-temporal redun-
dancy effectively, a host of video compression standards, such as
H.264/AVC [45], H.265/HEVC [36] and H.266/VVC [9] were pro-
posed. These standards based on hybrid compression framework
achieved efficient compression performance through hand-made
modules such as prediction, transformation, quantization, entropy
coding and in-loop filtering, etc.

In recent years, video compression based on deep learning has
become a new research hotspot. One of the representative method
is based on frame prediction, for example, in the classic scheme
DVC [28], optical flow estimation is used by Lu et al. to replace
the motion estimation in the traditional coding method, and neural
networks are employed to replace each module in the traditional
methods to realize an end-to-end optimization; In M-LVC [25],
multi-reference frames are applied to promote deep video com-
pression; RLVC [48] uses recurrent auto-encoder and recurrent
probability model to improve motion and residual compression; In
SSF [1], optical flow is introduced from two dimensions to multi-
dimensional space by Gaussian blurring, and motion compensation
is carried out in the high-dimensional space. Feature prediction
based method is another mainstream, which can use the rich in-
formation in feature space to achieve better reconstruction effect.
It has two technical routes, for example, in FVC [19], deformable

convolution [13] is firstly applied to realize feature-level prediction,
and the residual is calculated in the feature space; in DCVC [23],
video compression is regarded as a conditional coding problem,
which aims at generating condition in the feature space based on
feature prediction to remove the temporal redundancy.

The above feature prediction based methods use the decoded
previous frame at the decoder side as reference resembling the con-
ventional hybrid video coding framework. However, this damages
the structure of the obtained motion vector and the corresponding
residual for each frame, making it hard to be spatially encoded on
the image basis. Luckily, we have the original previous frame at the
encoder side, which contains all the information lost in the corre-
sponding decoded frame. Thus our work aims at the two technical
routes of feature prediction based methods, pays attention to the
role of the original previous frame at the encoder side, and uses its
rich information in an adaptive manner.

3 PROPOSED METHOD
Problem statements. Let 𝑋 = {𝑋1, 𝑋2, · · · , 𝑋𝑡−1, 𝑋𝑡 , · · · , } be a
GOP in a video sequence. At Low Delay P (LDP) encoding mode,
𝑋1 is a key frame, and other frames are forward predicted frames.
𝑋𝑡 is the frame to be encoded at the current time. Our goal is to use
the previous frame as reference and less bits as much as possible to
get a higher quality reconstructed frame 𝑋𝑡 . In our method, both
𝑋𝑡−1 and 𝑋𝑡−1 are used as references for motion estimation.
Overview. Without loss of generality and in consideration of com-
plexity, we firstly take FVC* [19] (without multi-frame feature
fusion module) as the baseline and apply our method on this frame-
work, and the extension to DCVC [23] is described at the experi-
ment part. As shown in Fig. 2, the framework consists of 7 modules:
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Figure 3: The network structure of the fusion module in the
proposed SPM-Net, which consists of two branches: the upper
is at spatial level, and the lower is at feature channel level.

Feature Extraction, SPM-Net, Motion Compression, MCPE-Net,
Residual Compression, Recon-Net and Entropy Coding.

First, the current frame𝑋𝑡 , the decoded previous frame𝑋𝑡−1 and
the original previous frame 𝑋𝑡−1 are mapped to the feature space
through the Feature Extraction module. Then the corresponding
features 𝐹𝑡 , 𝐹𝑡−1, 𝐹𝑡−1 are input to the Structure-Preserving Motion
estimation Network (SPM-Net) to calculate the highly-fitting mo-
tion field 𝜃𝑡 . Then 𝜃𝑡 is compressed by a Motion Compression
module and sent to the decoder side to form the corresponding
reconstructed motion field 𝜃𝑡 . After that, the Motion Compensation
and Prediction Enhancement Network (MCPE-Net) is used to gen-
erate the predicted current frame feature 𝐹𝑡 by using 𝜃𝑡 and 𝐹𝑡−1.
The residual 𝑅𝑡 between 𝐹𝑡 and 𝐹𝑡 is compressed through a Resid-
ual Compression module and sent to the decoder side to form the
corresponding reconstructed residual 𝑅𝑡 . Then 𝑅𝑡 is added to 𝐹𝑡 to
form the reconstructed feature 𝐹𝑡 . Finally, we use a reconstruction
network (Recon-Net) to reconstruct the current frame 𝑋𝑡 . The
Entropy Coding module provided by CompressAI [6] is used for
transforming the quantized features into the bit-streams and the
probability distribution of transmitted information is obtained by a
CNN network at the training stage.

Next, wewill mainly introduce themodules SPM-Net andMCPE-
Net. Other modules are the same as FVC [19].

3.1 Structure-Preserving Motion estimation
Network (SPM-Net)

As shown in Fig. 2, the SPM-Net includes three parts: main motion
field Δ𝑚𝑎𝑖𝑛 computation; auxiliary motion field Δ𝑎𝑢𝑥 computation;
and motion field fusion.

Twomotion field computation. The two branches in SPM-Net,
as shown in Fig. 2, are used for generating the main motion field
Δ𝑚𝑎𝑖𝑛 and the auxiliary motion field Δ𝑎𝑢𝑥 . A lightweight network
is employed as the following,

Δ𝑚𝑎𝑖𝑛 = 𝐶𝑜𝑛𝑣3×3 ◦ 𝑅𝑒𝐿𝑈 ◦𝐶𝑜𝑛𝑣3×3 ◦𝐶 (𝐹𝑡 , 𝐹𝑡−1),

Δ𝑎𝑢𝑥 = 𝐶𝑜𝑛𝑣3×3 ◦ 𝑅𝑒𝐿𝑈 ◦𝐶𝑜𝑛𝑣3×3 ◦𝐶 (𝐹𝑡 , 𝐹𝑡−1),

where 𝐶 (·, ·) represents the concatenation operation, 𝐶𝑜𝑛𝑣3×3 rep-
resents the convolution operation with the kernel size of 3 × 3, and
𝑅𝑒𝐿𝑈 is the activation function.
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Motion field fusion. The fusion module is shown in Fig. 3. The
main motion field is adaptively fused with the auxiliary motion field
at spatial and channel levels respectively. At the spatial level, by
extracting spatial information in Δ𝑎𝑢𝑥 , a kernel-adaptive network
is used to predict convolution kernels as follows,

𝑘𝑒𝑟𝑛𝑒𝑙𝑠 = 𝐿𝑖𝑛𝑒𝑎𝑟 ◦ (𝐶𝑜𝑛𝑣3×3)2 (Δ𝑎𝑢𝑥 ), (1)

where 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 ∈ R64×3×3 represents 3× 3 convolution kernels with
the same number of channels as Δ𝑚𝑎𝑖𝑛 , 𝐿𝑖𝑛𝑒𝑎𝑟 represents a linear
layer and (·)𝑛 represents the serial cascade of 𝑛 modules. Then,
these convolution kernels are applied to the feature maps of Δ𝑚𝑎𝑖𝑛

respectively as follows,

Δ𝑠 = 𝐶𝑜𝑛𝑣3×3 ◦𝐶𝑜𝑛𝑣𝑘 (Δ𝑚𝑎𝑖𝑛), (2)

where𝐶𝑜𝑛𝑣𝑘 represents the convolution with the predicted 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 .
The spatial correlation between Δ𝑚𝑎𝑖𝑛 and Δ𝑎𝑢𝑥 is captured by the
agile kernels.

At the channel level, attention mechanism is also applied. A
lightweight network is used to obtain the channel attention weights
denoted by

𝑉 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ◦ (𝐶𝑜𝑛𝑣3×3)2 (Δ𝑎𝑢𝑥 ), (3)

where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 means the standard Sigmoid function layer. Then
the weight is applied to the main motion field as Δ𝑐 = 𝑉 ⊗ Δ𝑚𝑎𝑖𝑛 .

At last, we fuse Δ𝑠 and Δ𝑐 to achieve the goal of absorbing the
native motion information Δ𝑎𝑢𝑥 , which is denoted by

𝜃𝑡 = Δ𝑚𝑎𝑖𝑛 +𝐶𝑜𝑛𝑣3×3 (Δ𝑠 + Δ𝑐 ). (4)

After the highly-fitting motion field 𝜃𝑡 is generated, it will be input
into theMotion Compression module and then the code stream
is transmitted to the decoder side.

Remark. Because we fuse Δ𝑎𝑢𝑥 based on Δ𝑚𝑎𝑖𝑛 , the information
in the decoded previous frame is considered, thus the estimated mo-
tion field is fitting the decoded previous frame. At the same time, the
auxiliary motion field Δ𝑎𝑢𝑥 is beneficial to remedy the inaccurate
features in 𝐹𝑡−1 for structure-preserving motion estimation.

3.2 Motion Compensation and Prediction
Enhancement Network (MCPE-Net)

As denoted in Fig. 2, after theMotion Compression module de-
compressed the motion field 𝜃𝑡 , this motion field will be employed
to predict the feature of the current frame 𝑋𝑡 . But at the decoder
side, only the decoded previous frame 𝑋𝑡−1 and its corresponding
feature 𝐹𝑡−1 can be accessed. As stated before, the decompressed
motion field cannot retrieve the missing information in the feature
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DCVC [23]. The red blocks and red lines represent our pro-
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of the decoded frame. The predicted current frame feature needs
to be enhanced based on the decoded previous frame feature. As
shown in Fig. 4, the proposed MCPE-Net consists of two parts:
deformable convolution based feature prediction and enhancement.

At first, deformable convolution is used to predict 𝐹𝑡 based on
𝐹𝑡−1 and the motion field 𝜃𝑡 [19]. The deformable offsets are cal-
culated as 𝑂𝑡 = 𝐶𝑜𝑛𝑣3×3 (𝜃𝑡 ) where 𝑂𝑡 ∈ R𝐺×2×3×3×𝐻×𝑊 , where
“2” represents horizontal and vertical directions; “3 × 3” represents
that each point has have 9 directions; “𝐻” and “𝑊 ” represent the
height and width of the feature map respectively; while “𝐺” is the
channel group number which is consistent with FVC [19], set as 8.
Finally, the initial predicted feature 𝐹𝑡 is calculated as

𝐹𝑡 = 𝐷𝐶𝑁 (𝑂𝑡 , 𝐹𝑡−1), (5)

where 𝐷𝐶𝑁 (·, ·) represents the deformable convolution.
The enhancement part uses the decoded previous frame feature

𝐹𝑡−1 to enhance the predicted current frame feature. The spatial
and channel attention mechanisms are applied to obtain useful
information in the decoded previous frame feature. At the spatial
attention level, 𝐹𝑠𝑡 = 𝐶𝑜𝑛𝑣3×3 ◦ 𝐶𝑜𝑛𝑣𝑘 (𝐹𝑡 ); while at the channel
attention level, 𝐹𝑐𝑡 = (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ◦ (𝐶𝑜𝑛𝑣3×3)2 ◦ 𝐶𝑜𝑛𝑣𝑠 (𝐹𝑡−1)) ⊗ 𝐹𝑡 .
Finally, the final enhanced feature 𝐹𝑡 is calculated as

𝐹𝑡 = 𝐹𝑡 +𝐶𝑜𝑛𝑣3×3 (𝐹𝑐𝑡 + 𝐹𝑠𝑡 ). (6)

Remark. MCPE-Net uses the similar idea in Section 3.1. The
overlapping or similar features existed in 𝐹𝑡−1 are combined in the
the predicted feature 𝐹𝑡 , and it compensates themissing information
in 𝐹𝑡 by 𝐹𝑡−1. As shown in Fig. 1(e), the enhanced feature can
reconstruct more details.

3.3 Loss Function
The purpose of video compression is to use less bits to obtain better
reconstruction quality. Therefore, the same as the baseline [19], our
scheme also optimizes the rate-distortion (R-D) tradeoff as follows,

𝐿 = 𝜆𝐷 + 𝑅 = 𝜆𝑑 (𝑥𝑡 , 𝑥𝑡 ) + 𝑅(�̂�𝑡 ) + 𝑅(𝑌𝑡 ), (7)

where 𝑑 (𝑥𝑡 , 𝑥𝑡 ) represents the distortion between the input frame
and the reconstructed frame, and 𝑑 (·, ·) represents the mean square
error MSE or the multi-scale structural similarity MS-SSIM. 𝑅(�̂�𝑡 )
represents the number of bits required for the latent representation
of encoded motion information and the corresponding hyper prior
information, and 𝑅(𝑌𝑡 ) represents the number of bits required for

Table 1: BDBR(%) results of FVC*, DCVC and their respective
enhanced versions based on our modules when compared
with H.265 in terms of PSNR.

FVC* SPME(FVC*) DCVC SPME(DCVC)

HEVC B -21.45 -26.78 -35.59 -39.53
HEVC C -2.14 -9.06 -14.88 -18.93
HEVC D -16.55 -21.60 -26.26 -29.98
HEVC E 8.31 -11.08 -17.69 -21.04
MCL-JCV 16.12 -3.16 -28.78 -31.70
UVG -12.82 -16.81 -37.74 -41.30

the latent representation of encoded residual information and the
corresponding hyper prior information. 𝜆 is the Lagrange multiplier
used to control the trade-off between bit-rate and distortion.

4 EXPERIMENTS
4.1 Experimental setup
Training dataset.We use Vimeo-90k [47] as the training dataset,
which contains 89,800 video clips with each video having 7 frames.
And the resolution of the images is randomly cut from 448x256 to
256x256.
Testing dataset. Similar to the baseline FVC [19], we useHEVC [36],
UVG [31], MCL-JCV [43] as the testing dataset. The HEVC dataset
(Class B, Class C, Class D, Class E) contains sixteen videos with
the resolutions from 416 × 240 to 1920 × 1080. The UVG dadaset
contains seven videos with the resolution of 1920x1080. And the
MCL-JCV dataset consists of thirty 1080p video sequences.
Evaluation metrics. We use PSNR and MS-SSIM [44] to measure
the distortion between the reconstructed frame and the original
frame. BPP (bit per pixel) is used to measure the number of bits
required for motion information, feature residual information and
their respective hyper prior information of each specific pixel in the
encoded frame. BDBR [8] value is also calculated, which represents
the average bit delta using the same PSNR or MS-SSIM.
Implementation details. Due to space limitations, more details
can be obtained from the Appendix. The code and appendix mate-
rials are available at https://github.com/gaohan-12/SPME.

4.2 Transplanting to DCVC
Motivation. To verify that our method can be widely used as a plug-
in unit in the learned video compression frameworks, we transplant
our method from FVC* [19] to DCVC [23]. DCVC is a framework
based on conditional coding, which aims at generating accurate
context information based on motion estimation and compensation.
The context is regarded as temporal prior, which is used to guide
the entropy coding together with the hyper prior and spatial prior.
As shown in Fig. 5, the red blocks and lines represent our proposed
method, and the other modules have the same structure with DCVC.
Next, we will mainly describe how to transplant our proposed
method to DCVC framework, and other modules same with DCVC
will be skipped.
Structure-preserving motion estimation. At the encoder side,
because DCVC uses optical flow as the motion field, we fuse the

https://github.com/gaohan-12/SPME
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Figure 6: The experimental results on the HEVC Class B, Class C, Class D, Class E, UVG and MCL-JCV datasets.

optical flows with channel = 2. Firstly, two optical flows named
Δ𝑚𝑎𝑖𝑛 and Δ𝑎𝑢𝑥 are calculated by SpyNet [33], in which Δ𝑚𝑎𝑖𝑛 is
calculated between the current frame 𝑥𝑡 and the decoded previous
frame 𝑥𝑡−1, and Δ𝑎𝑢𝑥 is calculated between the current frame 𝑥𝑡
and the original previous frame 𝑥𝑡−1. Then we fuse Δ𝑎𝑢𝑥 based on
Δ𝑚𝑎𝑖𝑛 to make up for the missing structure information in Δ𝑚𝑎𝑖𝑛

due to the unclear pixel in 𝑥𝑡−1. The fusion module has the same
structure as Fig. 3 but with the different number of channels to be
consistent with the channel of optical flow, setting to 2.
Context enhancement.At the decoder side, we propose to use the
previous frame feature 𝑓𝑡−1 to enhance the initial context. Similarly,
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we also apply the same structure as shown in Fig. 3 to enhance the
initial context 𝑐𝑡 at both the spatial and channel levels to form the
enhanced context 𝑐𝑡 . Then 𝑐𝑡 will be used to guide the contextual
encoder, contextual decoder and entropy coding.
Other details.More details can be obtained from the Appendix, as
Sec. 4.1 mentioned.

4.3 Experimental results
Settings of competitors. In order to verify the effectiveness of
our proposed method, we compare the test results of our model
with the traditional method H.265 [36] and the baselines FVC [19]
and DCVC [23]. For H.265, we use the same instructions in [46] to
execute the FFmpeg X265 compression software with𝑚𝑒𝑑𝑖𝑢𝑚mode.
For FVC, for fair comparison and in consideration of complexity,
we implemented their model without multi-frame feature fusion
module, termed as FVC*. As for intra-frame coding, we directly use
the existing deep image compressionmodel cheng-2020-anchor [12]
for MSE loss and hyperprior [4] for MS-SSIM loss provided by
CompressAI [6], and the quality levels corresponding to four 𝜆
values are set to 3, 4, 5 and 6 respectively. Following the previous
methods [19, 29], we set the GOP size of HEVC, UVG and MCL-JCV
datasets to 10, 12 and 12 respectively. For consistency, the tested
frame number of HEVC datasets is 100 (10 GOPs), and the tested
frame number of MCL-JCV and UVG datasets are equal to the total
number of frames in the whole sequence respectively.
Results. Fig. 6 shows the rate-distortion curves of these methods on
the HEVC, UVG and MCL-JCV datasets. We can find that the base-
lines FVC* and DCVC can get further notable improvement through
adding our proposed method for all bit-rate ranges in terms of PSNR
and MS-SSIM, particular on the HEVC Class E dataset. Table 1 gives
the BDBR results when compared with H.265 [36] in terms of PSNR.
Result shows that FVC* can only achieve about 4.76% gains in PSNR
metrics on these datasets, but if it is incorporated with our proposed
method, about 14.75% gains can be obtained. As for DCVC, it can
get 26.82% gains without our method, but 30.41% when our method
is incorporated. It means that our proposed method is beneficial
to the compression scheme in feature space as an agile plug-in
unit. It should be noted that the experimental results show that
the gain of our proposed method on FVC* is greater than that on
DCVC. This is because that the compression process of FVC* is
based on prediction-then-residual, which leads to a strong depen-
dence on the accuracy of predicted features, but DCVC is based

Table 2: Ablation study of the attention mechanism on the
HEVC Class D dataset in terms of PSNR. 1rt and 2nd rep-
resent the highly-fitting motion field fusion module and
prediction enhancement module respectively. Spatial and
Channel represent the different branches in the modules.

Spatial Channel Spatial Channel Bit-rate increase
(1rt) (1rt) (2nd) (2nd)

0.0%
4.33%
3.58%
4.29%
6.34%

on prediction-then-condition, which is not particularly dependent
on the predicted features. It is also shown in [37], the temporal
context comes directly from the feature of the decoded previous
frame without any prediction operation, but the performance is
still satisfied.

4.4 Ablation study
Unless otherwise specified, the following ablation experiments are
performed on FVC*.
Effectiveness of different reference frames. As shown in Fig. 7,
we test the effectiveness of using different reference frames on the
HEVC Class D dataset. The first case, termed as Single Original
Reference, uses the original previous frame 𝑋𝑡−1 for motion estima-
tion at the encoder side, but uses the decoded previous frame 𝑋𝑡−1
for motion compensation at the decoder side. In the second case,
termed as Single Decoded Reference,𝑋𝑡−1 is used as reference at both
of encoder and decoder sides. Our scheme is termed as Two Refer-
ences, where both 𝑋𝑡−1 and 𝑋𝑡−1 are used for motion estimation at
the encoder side but only 𝑋𝑡−1 is used for motion compensation at
the decoder side. It can be seen from Fig. 7, the performance of Two
References outperforms the other two methods. This point proves
that because the ideal motion field (Single Original Reference) is not
consistent with the decoded previous frame, the prediction of the
current frame feature is not the best. So we call the fused motion
field in Eq. (4) as the highly-fitting motion field which combines
two frames and also fits the decoded previous frame. From the
experiment, it can also be observed that Single Original Reference is
indeed better than Single Decoded Reference because it uses more
information in the original frame 𝑋𝑡−1.
Effectiveness of different components and branches. As dis-
cussed in Sec. 3.1 and Sec. 3.2, the similar attention mechanism is
applied to motion field fusion module and prediction enhancement
module respectively. To verify the role of spatial and channel level
attention branches in the two modules, we test the effect of using
different branches on the results. As shown in Table. 2, the “1𝑟𝑡”
and “2𝑛𝑑” represent the motion field fusion module and prediction
enhancement module respectively. The symbols “ ” and “ ” mean
the corresponding branch is used or not used respectively. The
second row indicates that the performance will drop if we only
fuse the motion field but do not enhance the predicted feature. It
is because that the highly-fitting motion field although can shift
the feature to the exact location, but it dose not rescue the missing
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Figure 8: Analysis of error propagation on UVG dataset with
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frame respectively. The first frame is the I frame, and the
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information in the decoded previous frame, an enhancement mod-
ule is necessary to address this. The third and fourth rows indicate
that 3.58% bit-rate will increase if the channel level branches in the
two modules are disabled, 4.29% bit-rate will increase if the spatial
level branches are disabled. This means that the spatial attention is
more important than channel attention. This is reasonable because
we rely on spatial attention mechanism to obtain complementary
information from the decoded previous frame to enhance the pre-
dicted current frame feature. The last row demonstrates that the
optimal effect can be achieved only by the joint all branches.
Analysis of error propagation. As discussed above, the previous
feature prediction based compression method used the decoded
previous frame as a reference. Due to the phenomenon of error
propagation, the frames in the rear of a GOP will suffer from serious
distortion. If we continue to use the frame with severe distortion as
reference, this situation emerges that no clear corresponding pixel
or feature can be found in the reference frame for motion estima-
tion, so that the motion information is with structural missing. For
verifying the role of the original previous frame when compressing
the current frame, we compare the quality of each frame in a ran-
dom GOP in the UVG dataset with FVC* [19]. In order to fully prove
that our proposed method is more useful for slowing down error
propagation, we enlarge the GOP size to 30. As shown in Fig. 8, we
can find that our proposed method can restrain the phenomenon
of error propagation to a certain extent, particularly for the frames
in the rear of a GOP. While FVC* has constant attenuation when
the GOP size is increasing.
Visualization of different motion fields. As shown in Fig. 9, in
order to further verify the effectiveness of our proposed method,
we visualize the motion field to be transmitted (named 𝜃𝑡 in FVC*
based model and 𝑚𝑡 in DCVC based model) between the ninth
frame and the tenth frame in the BasketballPass sequence from the
HEVC Class D dataset. (a) is the motion field from FVC* [19], and
(b) is the corresponding highly-fitting motion field. After motion
fusion, highly-fitting motion field contains more detailed informa-
tion, especially at the edges of the objects. It is well known that
the edges of objects are prone to pixel details losing, which is dif-
ficult to exactly estimate the motion at these areas. However, our

(a) (b)

(c) (d)

Figure 9: Visualization of different motion fields. (b) has
more details than (a) at the edges of the objects. (d) is clearer
than (c) in the marked area. Zoom in for best view.

proposed method can well inhibit the occurrence and spread of
this situation because the useful and clear information in 𝑥𝑡−1 is
considered. (c) is the motion field from DCVC, also called optical
flow, and (d) is the corresponding highly-fitting motion field after
motion fusion. It can be found that the quality of optical flow has
also been improved after fusion, but the amount of change is not as
much as FVC* based model. This dues to two reasons. DCVC uses
only two channels to represent the motion information, and to be
consistent with DCVC, our SPME does not change this, making the
representation of motion information less rich than FVC. Thus the
enhanced motion estimation is difficult to keep both the real mo-
tion information and the motion information based on the decoded
frames. Another point is that as shown in Table 1, the quality of the
decoded previous frame by DCVC is better than that of FVC*. How-
ever, it is worth mentioning that even with such limited conditions,
our method still improves the performance of DCVC.

5 CONCLUSION
This paper investigates exploring the rich information in the orig-
inal previous frame at the encoder side to make up for the disad-
vantage of using only the decoded previous frame as the reference
for motion estimation. Specifically, a structure-preserving motion
estimation network is proposed to use the original previous frame
as auxiliary data to enhance the motion estimation between the cur-
rent frame and the decoded previous frame to form a highly-fitting
motion field. It keeps the spatial structure and teporal coherency
of the motion information and the corresponding prediction resid-
ual in order to be better coded with CNNs while considering the
prediction efficiency. Then a motion compensation and prediction
enhancement module is developed to predict and enhance the cur-
rent frame feature. Experimental results showed that our method
further saves 9.99% bit-rate over the baseline FVC*, and the phe-
nomenon of error propagation has also been alleviated to a certain
extent. Furthermore, there are also gains when we transplant our
proposed method to the other feature prediction based video com-
pression framework, which indicates that our approach can be
widely used as a plug-in unit.
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